aboutsummaryrefslogtreecommitdiff
path: root/src/noscrypt.c
diff options
context:
space:
mode:
authorLibravatar vnugent <public@vaughnnugent.com>2024-01-28 19:23:18 -0500
committerLibravatar vnugent <public@vaughnnugent.com>2024-01-28 19:23:18 -0500
commit626a8d8d3df8880991684d6d1a06b82f6685b51a (patch)
tree183c981ac44886445240ad1e1945f325ceaa9298 /src/noscrypt.c
initial commit
Diffstat (limited to 'src/noscrypt.c')
-rw-r--r--src/noscrypt.c865
1 files changed, 865 insertions, 0 deletions
diff --git a/src/noscrypt.c b/src/noscrypt.c
new file mode 100644
index 0000000..6ef273f
--- /dev/null
+++ b/src/noscrypt.c
@@ -0,0 +1,865 @@
+/*
+* Copyright (c) 2024 Vaughn Nugent
+*
+* Library: noscrypt
+* Package: noscrypt
+* File: noscrypt.c
+*
+* noscrypt is free software: you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published
+* by the Free Software Foundation, either version 2 of the License,
+* or (at your option) any later version.
+*
+* noscrypt is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+* General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with noscrypt. If not, see http://www.gnu.org/licenses/.
+*/
+
+#include "noscrypt.h"
+
+#include <secp256k1_ecdh.h>
+#include <secp256k1_schnorrsig.h>
+
+//Setup mbedtls
+#include <mbedtls/platform_util.h>
+#include <mbedtls/md.h>
+#include <mbedtls/hkdf.h>
+#include <mbedtls/chacha20.h>
+#include <mbedtls/sha256.h>
+
+#define CHACHA_NONCE_SIZE 12 //Size of 12 is set by the cipher spec
+#define CHACHA_KEY_SIZE 32
+#define HMAC_KEY_SIZE 32
+
+/*
+* Local macro for secure zero buffer fill
+*/
+#define ZERO_FILL(x, size) mbedtls_platform_zeroize(x, size)
+
+//Include string for memmove
+#include <string.h>
+#define MEMMOV(dst, src, size) memmove(dst, src, size)
+
+struct nc_expand_keys {
+ uint8_t chacha_key[CHACHA_KEY_SIZE];
+ uint8_t chacha_nonce[CHACHA_NONCE_SIZE];
+ uint8_t hamc_key[HMAC_KEY_SIZE];
+};
+
+struct shared_secret {
+ uint8_t value[NC_SHARED_SEC_SIZE];
+};
+
+struct conversation_key {
+ uint8_t value[NC_CONV_KEY_SIZE];
+};
+
+struct message_key {
+ uint8_t value[NC_MESSAGE_KEY_SIZE];
+};
+
+/*
+* Internal helper functions to do common structure conversions
+*/
+
+static inline int _convertToXonly(const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_xonly_pubkey* xonly)
+{
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure")
+ DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure ")
+
+ //Parse the public key into the x-only structure
+ return secp256k1_xonly_pubkey_parse(ctx->secpCtx, xonly, compressedPubKey->key);
+}
+
+static int _convertToPubKey(const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_pubkey* pubKey)
+{
+ int result;
+ uint8_t compressed[NC_PUBKEY_SIZE + 1];
+
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure")
+ DEBUG_ASSERT2(pubKey != NULL, "Expected valid secp256k1 public key structure")
+
+ //Set the first byte to 0x02 to indicate a compressed public key
+ compressed[0] = BIP340_PUBKEY_HEADER_BYTE;
+
+ //Copy the compressed public key data into a new buffer (offset by 1 to store the header byte)
+ MEMMOV((compressed + 1), compressedPubKey->key, NC_PUBKEY_SIZE);
+
+ result = secp256k1_ec_pubkey_parse(ctx->secpCtx, pubKey, compressed, sizeof(compressed));
+
+ //zero everything
+ ZERO_FILL(compressed, sizeof(compressed));
+
+ return result;
+}
+
+static inline int _convertFromXonly(const NCContext* ctx, const secp256k1_xonly_pubkey* xonly, NCPublicKey* compressedPubKey)
+{
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure.")
+ DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte pubkey structure")
+
+ return secp256k1_xonly_pubkey_serialize(ctx->secpCtx, compressedPubKey->key, xonly);
+}
+
+/*
+* IMPL NOTES:
+* This callback function will be invoked by the ecdh function to hash the shared point.
+*
+* For nostr, this operation is defined in the new NIP-44 spec here:
+* https://github.com/nostr-protocol/nips/blob/master/44.md#encryption
+*
+* The x coordinate of the shared point is copied directly into the output buffer. No hashing is
+* performed here. The y coordinate is not used, and for this implementation, there is no data
+* pointer.
+*/
+static int _edhHashFuncInternal(
+ unsigned char* output,
+ const uint8_t* x32,
+ const uint8_t* y32,
+ void* data
+)
+{
+ ((void)y32); //unused for nostr
+ ((void)data);
+
+ DEBUG_ASSERT2(output != NULL, "Expected valid output buffer")
+ DEBUG_ASSERT2(x32 != NULL, "Expected a valid public 32byte x-coodinate buffer")
+
+ //Copy the x coordinate of the shared point into the output buffer
+ MEMMOV(output, x32, 32);
+
+ return 32; //Return the number of bytes written to the output buffer
+}
+
+static NCResult _computeSharedSecret(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const NCPublicKey* otherPk,
+ struct shared_secret* sharedPoint
+)
+{
+ int result;
+ secp256k1_pubkey pubKey;
+
+ DEBUG_ASSERT(ctx != NULL)
+ DEBUG_ASSERT(sk != NULL)
+ DEBUG_ASSERT(otherPk != NULL)
+ DEBUG_ASSERT(sharedPoint != NULL)
+
+ //Recover pubkey from compressed public key data
+ if (_convertToPubKey(ctx, otherPk, &pubKey) != 1)
+ {
+ return E_INVALID_ARG;
+ }
+
+ /*
+ * Compute the shared point using the ecdh function.
+ *
+ * The above callback is invoked to "compute" the hash (it
+ * copies the x coord) and it does not use the data pointer
+ * so it is set to NULL.
+ */
+ result = secp256k1_ecdh(
+ ctx->secpCtx,
+ (uint8_t*)sharedPoint,
+ &pubKey,
+ sk->key,
+ &_edhHashFuncInternal,
+ NULL
+ );
+
+ //Clean up sensitive data
+ ZERO_FILL(&pubKey, sizeof(secp256k1_pubkey));
+
+ return (NCResult)result;
+}
+
+static inline const mbedtls_md_info_t* _getSha256MdInfo(void)
+{
+ const mbedtls_md_info_t* info;
+ //Get sha256 md info for hdkf operations
+ info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256);
+ DEBUG_ASSERT2(info != NULL, "Expected SHA256 md info struct to be valid")
+ return info;
+}
+
+
+static inline NCResult _computeConversationKey(
+ const NCContext* ctx,
+ const mbedtls_md_info_t* mdInfo,
+ const struct shared_secret* sharedSecret,
+ struct conversation_key* ck
+)
+{
+ //Validate internal args
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(sharedSecret != NULL, "Expected a valid shared-point")
+ DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md context")
+ DEBUG_ASSERT2(ck != NULL, "Expected a valid conversation key")
+
+ //Derive the encryption key (returns 0 on success so it can be cast to an NCResult)
+ return (NCResult)mbedtls_hkdf_extract(
+ mdInfo,
+ Nip44ConstantSalt,
+ sizeof(Nip44ConstantSalt),
+ (uint8_t*)sharedSecret, //Shared secret is the input key
+ NC_SHARED_SEC_SIZE,
+ (uint8_t*)ck //Output produces a conversation key
+ );
+}
+
+
+/*
+* Explode the hkdf into the chacha key, chacha nonce, and hmac key.
+*/
+static inline void _expandKeysFromHkdf(const struct message_key* hkdf, struct nc_expand_keys* keys)
+{
+ uint8_t* hkdfBytes;
+
+ DEBUG_ASSERT2(hkdf != NULL, "Expected valid hkdf")
+
+ hkdfBytes = (uint8_t*)hkdf;
+
+ //Copy segments of the hkdf into the keys struct
+ MEMMOV(
+ keys->chacha_key,
+ hkdfBytes,
+ CHACHA_KEY_SIZE
+ );
+
+ MEMMOV(
+ keys->chacha_nonce,
+ (hkdfBytes + CHACHA_KEY_SIZE),
+ CHACHA_NONCE_SIZE
+ );
+
+ MEMMOV(
+ keys->hamc_key,
+ (hkdfBytes + CHACHA_KEY_SIZE + CHACHA_NONCE_SIZE),
+ HMAC_KEY_SIZE
+ );
+}
+
+static int _chachaEncipher(const struct nc_expand_keys* keys, NCCryptoData* args)
+{
+ int result;
+ mbedtls_chacha20_context chachaCtx;
+
+ DEBUG_ASSERT2(keys != NULL, "Expected valid keys")
+ DEBUG_ASSERT2(args != NULL, "Expected valid encryption args")
+ DEBUG_ASSERT2(sizeof(keys->chacha_nonce) == 12, "Chacha nonce must be 12 exactly bytes in length")
+
+ //Init the chacha context
+ mbedtls_chacha20_init(&chachaCtx);
+
+ //Set the key and nonce
+ result = mbedtls_chacha20_setkey(&chachaCtx, keys->chacha_key);
+ DEBUG_ASSERT2(result == 0, "Expected chacha setkey to return 0")
+
+ result = mbedtls_chacha20_starts(&chachaCtx, keys->chacha_nonce, 0);
+ DEBUG_ASSERT2(result == 0, "Expected chacha starts to return 0")
+
+ //Encrypt the plaintext
+ result = mbedtls_chacha20_update(&chachaCtx, args->dataSize, args->inputData, args->outputData);
+ DEBUG_ASSERT2(result == 0, "Expected chacha update to return 0")
+
+ //Clean up the chacha context
+ mbedtls_chacha20_free(&chachaCtx);
+
+ return result;
+}
+
+static inline NCResult _getMessageKey(
+ const mbedtls_md_info_t* mdInfo,
+ const struct conversation_key* converstationKey,
+ const uint8_t* nonce,
+ size_t nonceSize,
+ struct message_key* messageKey
+)
+{
+ DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md context")
+ DEBUG_ASSERT2(nonce != NULL, "Expected valid nonce buffer")
+ DEBUG_ASSERT2(converstationKey != NULL, "Expected valid conversation key")
+ DEBUG_ASSERT2(messageKey != NULL, "Expected valid message key buffer")
+
+ //Another HKDF to derive the message key with nonce
+ return (NCResult)mbedtls_hkdf_expand(
+ mdInfo,
+ (uint8_t*)converstationKey, //Conversation key is the input key
+ NC_CONV_KEY_SIZE,
+ nonce,
+ nonceSize,
+ (uint8_t*)messageKey, //Output produces a message key
+ NC_MESSAGE_KEY_SIZE
+ );
+}
+
+static inline NCResult _encryptEx(
+ const NCContext* ctx,
+ const mbedtls_md_info_t* mdINfo,
+ const struct conversation_key* ck,
+ NCCryptoData* args
+)
+{
+ NCResult result;
+ struct message_key messageKey;
+ struct nc_expand_keys cipherKeys;
+
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key")
+ DEBUG_ASSERT2(args != NULL, "Expected valid encryption args")
+
+ //Failure, bail out
+ if ((result = _getMessageKey(mdINfo, ck, args->nonce, NC_ENCRYPTION_NONCE_SIZE, &messageKey)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ //Expand the keys from the hkdf so we can use them in the cipher
+ _expandKeysFromHkdf(&messageKey, &cipherKeys);
+
+ //CHACHA20
+ result = _chachaEncipher(&cipherKeys, args);
+
+Cleanup:
+ //Clean up sensitive data
+ ZERO_FILL(&messageKey, sizeof(messageKey));
+
+ return result;
+}
+
+static inline NCResult _decryptEx(
+ const NCContext* ctx,
+ const mbedtls_md_info_t* mdInfo,
+ const struct conversation_key* ck,
+ NCCryptoData* args
+)
+{
+ NCResult result;
+ struct message_key messageKey;
+ struct nc_expand_keys cipherKeys;
+
+ //Assume message key buffer is the same size as the expanded key struct
+ DEBUG_ASSERT2(sizeof(messageKey) == sizeof(cipherKeys), "Message key size and expanded key sizes do not match")
+
+ DEBUG_ASSERT2(ctx != NULL, "Expected valid context")
+ DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key")
+ DEBUG_ASSERT2(args != NULL, "Expected valid encryption args")
+ DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md info struct")
+
+ //Failure to get message keys, bail out
+ if ((result = _getMessageKey(mdInfo, ck, args->nonce, NC_ENCRYPTION_NONCE_SIZE, &messageKey)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ //Expand the keys from the hkdf so we can use them in the cipher
+ _expandKeysFromHkdf(&messageKey, &cipherKeys);
+
+ //CHACHA20
+ result = _chachaEncipher(&cipherKeys, args);
+
+Cleanup:
+ //Clean up sensitive data
+ ZERO_FILL(&messageKey, sizeof(messageKey));
+
+ return result;
+}
+
+/*
+* Compute the sha256 digest of the data. This function should always return 0
+* on success.
+*/
+static inline int _computeSha256Digest(const uint8_t* data, size_t length, uint8_t digest[32])
+{
+ int result;
+ mbedtls_sha256_context sha256;
+
+ DEBUG_ASSERT2(data != NULL, "Expected valid data buffer")
+ DEBUG_ASSERT2(digest != NULL, "Expected valid digest buffer")
+
+ //Init the sha256 context
+ mbedtls_sha256_init(&sha256);
+
+ //starting context should never fail
+ result = mbedtls_sha256_starts(&sha256, 0);
+ DEBUG_ASSERT2(result == 0, "Expected sha256 starts to return 0")
+
+ //may fail if the data is invalid
+ if ((result = mbedtls_sha256_update(&sha256, data, length)) != 0)
+ {
+ goto Cleanup;
+ }
+
+ //Finishing context should never fail
+ result = mbedtls_sha256_finish(&sha256, digest);
+
+Cleanup:
+ //Always free the context
+ mbedtls_sha256_free(&sha256);
+
+ return result;
+}
+
+/*
+* EXTERNAL API FUNCTIONS
+*/
+NC_EXPORT uint32_t NC_CC NCGetContextStructSize(void)
+{
+ return sizeof(NCContext);
+}
+
+NC_EXPORT NCResult NC_CC NCInitContext(
+ NCContext* ctx,
+ const uint8_t entropy[32]
+)
+{
+ CHECK_NULL_PTR(ctx)
+ CHECK_NULL_PTR(entropy)
+
+ ctx->secpCtx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+
+ //Randomize once on init
+ return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG;
+}
+
+NC_EXPORT NCResult NC_CC NCReInitContext(
+ NCContext* ctx,
+ const uint8_t entropy[32]
+)
+{
+ CHECK_NULL_PTR(ctx)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+ CHECK_INVALID_ARG(entropy)
+
+ //Only randomize again
+ return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG;
+}
+
+NC_EXPORT NCResult NC_CC NCDestroyContext(NCContext* ctx)
+{
+ CHECK_NULL_ARG(ctx, 0);
+ CHECK_INVALID_ARG(ctx->secpCtx);
+
+ //Destroy secp256k1 context
+ secp256k1_context_destroy(ctx->secpCtx);
+
+ //Wipe the context
+ ZERO_FILL(ctx, sizeof(NCContext));
+
+ return NC_SUCCESS;
+}
+
+//KEY Functions
+NC_EXPORT NCResult NC_CC NCGetPublicKey(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ NCPublicKey* pk
+)
+{
+ int result;
+ secp256k1_keypair keyPair;
+ secp256k1_xonly_pubkey xonly;
+
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(pk, 2)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1)
+ {
+ return E_INVALID_ARG;
+ }
+
+ //Generate the x-only public key, docs say this should always return 1
+ result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair);
+ DEBUG_ASSERT2(result == 1, "Expected x-only kepair to ALWAYS return 1")
+
+ //Convert to compressed pubkey
+ result = _convertFromXonly(ctx, &xonly, pk);
+ DEBUG_ASSERT2(result == 1, "Expected x-only pubkey serialize to return 1")
+
+ //Clean out keypair
+ ZERO_FILL(&keyPair, sizeof(secp256k1_keypair));
+ ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey));
+
+ return NC_SUCCESS;
+}
+
+NC_EXPORT NCResult NC_CC NCValidateSecretKey(
+ const NCContext* ctx,
+ const NCSecretKey* sk
+)
+{
+ CHECK_NULL_PTR(ctx)
+ CHECK_NULL_PTR(sk)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Validate the secret key
+ return secp256k1_ec_seckey_verify(ctx->secpCtx, sk->key) ? NC_SUCCESS : E_INVALID_ARG;
+}
+
+//Ecdsa Functions
+
+NC_EXPORT NCResult NC_CC NCSignDigest(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const uint8_t random32[32],
+ const uint8_t digest32[32],
+ uint8_t sig64[64]
+)
+{
+ int result;
+ secp256k1_keypair keyPair;
+ secp256k1_xonly_pubkey xonly;
+
+ //Validate arguments
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(random32, 2)
+ CHECK_NULL_ARG(digest32, 3)
+ CHECK_NULL_ARG(sig64, 4)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Generate the keypair
+ if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1)
+ {
+ return E_INVALID_ARG;
+ }
+
+ //Sign the digest
+ result = secp256k1_schnorrsig_sign32(ctx->secpCtx, sig64, digest32, &keyPair, random32);
+ DEBUG_ASSERT2(result == 1, "Expected schnorr signature to return 1");
+
+ //x-only public key from keypair so the signature can be verified
+ result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair);
+ DEBUG_ASSERT2(result == 1, "Expected x-only public key to ALWAYS return 1");
+
+ //Verify the signature is valid
+ result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly);
+
+ //cleanup any sensitive data
+ ZERO_FILL(&keyPair, sizeof(secp256k1_keypair));
+ ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey));
+
+ return result == 1 ? NC_SUCCESS : E_INVALID_ARG;
+}
+
+NC_EXPORT NCResult NC_CC NCSignData(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const uint8_t random32[32],
+ const uint8_t* data,
+ size_t dataSize,
+ uint8_t sig64[64]
+)
+{
+ uint8_t digest[32];
+
+ CHECK_NULL_ARG(data, 2)
+ //CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 3)
+
+ //Compute sha256 of the data before signing
+ if(_computeSha256Digest(data, dataSize, digest) != 0)
+ {
+ return E_INVALID_ARG;
+ }
+
+ //Sign the freshly computed digest
+ return NCSignDigest(ctx, sk, random32, digest, sig64);
+}
+
+NC_EXPORT NCResult NC_CC NCVerifyDigest(
+ const NCContext* ctx,
+ const NCPublicKey* pk,
+ const uint8_t digest32[32],
+ const uint8_t sig64[64]
+)
+{
+ int result;
+ secp256k1_xonly_pubkey xonly;
+
+ DEBUG_ASSERT(&xonly != NULL)
+
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sig64, 1)
+ CHECK_NULL_ARG(digest32, 2)
+ CHECK_NULL_ARG(pk, 3)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //recover the x-only key from a compressed public key
+ if(_convertToXonly(ctx, pk, &xonly) != 1)
+ {
+ return E_INVALID_ARG;
+ }
+
+ //Verify the signature
+ result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly);
+
+ //cleanup any sensitive data
+ ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey));
+
+ return result == 1 ? NC_SUCCESS : E_INVALID_ARG;
+}
+
+NC_EXPORT NCResult NC_CC NCVerifyData(
+ const NCContext* ctx,
+ const NCPublicKey* pk,
+ const uint8_t* data,
+ const size_t dataSize,
+ uint8_t sig64[64]
+)
+{
+ uint8_t digest[32];
+
+ CHECK_NULL_ARG(data, 2)
+ //CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 3)
+
+ //Compute sha256 of the data before verifying
+ if (_computeSha256Digest(data, dataSize, digest) != 0)
+ {
+ return E_INVALID_ARG;
+ }
+
+ //Verify the freshly computed digest
+ return NCVerifyDigest(ctx, pk, digest, sig64);
+}
+
+//ECDH Functions
+NC_EXPORT NCResult NC_CC NCGetSharedSecret(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const NCPublicKey* otherPk,
+ uint8_t sharedPoint[NC_SHARED_SEC_SIZE]
+)
+{
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(otherPk, 2)
+ CHECK_NULL_ARG(sharedPoint, 3)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ return _computeSharedSecret(
+ ctx,
+ sk,
+ otherPk,
+ (struct shared_secret*)sharedPoint
+ );
+}
+
+NC_EXPORT NCResult NC_CC NCGetConversationKeyEx(
+ const NCContext* ctx,
+ const uint8_t sharedPoint[NC_SHARED_SEC_SIZE],
+ uint8_t conversationKey[NC_CONV_KEY_SIZE]
+)
+{
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sharedPoint, 1)
+ CHECK_NULL_ARG(conversationKey, 2)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Cast the shared point to the shared secret type
+ return _computeConversationKey(
+ ctx,
+ _getSha256MdInfo(),
+ (struct shared_secret*)sharedPoint,
+ (struct conversation_key*)conversationKey
+ );
+}
+
+NC_EXPORT NCResult NC_CC NCGetConversationKey(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const NCPublicKey* pk,
+ uint8_t conversationKey[NC_CONV_KEY_SIZE]
+)
+{
+ NCResult result;
+ struct shared_secret sharedSecret;
+ const mbedtls_md_info_t* mdInfo;
+
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(pk, 2)
+ CHECK_NULL_ARG(conversationKey, 3)
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ mdInfo = _getSha256MdInfo();
+
+ //Compute the shared point
+ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ result = _computeConversationKey(
+ ctx,
+ mdInfo,
+ &sharedSecret,
+ (struct conversation_key*)conversationKey
+ );
+
+Cleanup:
+ //Clean up sensitive data
+ ZERO_FILL(&sharedSecret, sizeof(sharedSecret));
+
+ return result;
+}
+
+NC_EXPORT NCResult NC_CC NCEncryptEx(
+ const NCContext* ctx,
+ const uint8_t conversationKey[NC_CONV_KEY_SIZE],
+ NCCryptoData* args
+)
+{
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(conversationKey, 1)
+ CHECK_NULL_ARG(args, 2)
+
+ //Validate the context
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Validte ciphertext/plaintext
+ CHECK_INVALID_ARG(args->inputData)
+ CHECK_INVALID_ARG(args->outputData)
+ CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3)
+
+ return _encryptEx(
+ ctx,
+ _getSha256MdInfo(),
+ (struct conversation_key*)conversationKey,
+ args
+ );
+}
+
+NC_EXPORT NCResult NC_CC NCEncrypt(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const NCPublicKey* pk,
+ NCCryptoData* args
+)
+{
+ NCResult result;
+ const mbedtls_md_info_t* mdInfo;
+ struct shared_secret sharedSecret;
+ struct conversation_key ck;
+
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(pk, 2)
+ CHECK_NULL_ARG(args, 3)
+
+ //Validate the context
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Validate input/output data
+ CHECK_INVALID_ARG(args->inputData)
+ CHECK_INVALID_ARG(args->outputData)
+ CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3)
+
+ mdInfo = _getSha256MdInfo();
+
+ //Compute the shared point
+ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ //Compute the conversation key from secret and pubkic keys
+ if ((result = _computeConversationKey(ctx, mdInfo, &sharedSecret, &ck)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ result = _encryptEx(ctx, mdInfo, &ck, args);
+
+Cleanup:
+ //Clean up sensitive data
+ ZERO_FILL(&sharedSecret, sizeof(sharedSecret));
+ ZERO_FILL(&ck, sizeof(ck));
+
+ return result;
+}
+
+
+NC_EXPORT NCResult NC_CC NCDecryptEx(
+ const NCContext* ctx,
+ const uint8_t conversationKey[NC_CONV_KEY_SIZE],
+ NCCryptoData* args
+)
+{
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(conversationKey, 1)
+ CHECK_NULL_ARG(args, 2)
+
+ //Validate the context
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Validte ciphertext/plaintext
+ CHECK_INVALID_ARG(args->inputData)
+ CHECK_INVALID_ARG(args->outputData)
+ CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_DEC_MESSAGE_SIZE, NIP44_MAX_DEC_MESSAGE_SIZE, 3)
+
+ return _decryptEx(
+ ctx,
+ _getSha256MdInfo(),
+ (struct conversation_key*)conversationKey,
+ args
+ );
+}
+
+
+NC_EXPORT NCResult NC_CC NCDecrypt(
+ const NCContext* ctx,
+ const NCSecretKey* sk,
+ const NCPublicKey* pk,
+ NCCryptoData* args
+)
+{
+ NCResult result;
+ struct shared_secret sharedSecret;
+ struct conversation_key conversationKey;
+ const mbedtls_md_info_t* mdInfo;
+
+ CHECK_NULL_ARG(ctx, 0)
+ CHECK_NULL_ARG(sk, 1)
+ CHECK_NULL_ARG(pk, 2)
+ CHECK_NULL_ARG(args, 3)
+
+ //Validate the context
+ CHECK_INVALID_ARG(ctx->secpCtx)
+
+ //Validte ciphertext/plaintext
+ CHECK_INVALID_ARG(args->inputData)
+ CHECK_INVALID_ARG(args->outputData)
+ CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_DEC_MESSAGE_SIZE, NIP44_MAX_DEC_MESSAGE_SIZE, 3)
+
+ mdInfo = _getSha256MdInfo();
+
+ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ if ((result = _computeConversationKey(ctx, mdInfo, &sharedSecret, &conversationKey)) != NC_SUCCESS)
+ {
+ goto Cleanup;
+ }
+
+ result = _decryptEx(ctx, mdInfo, &conversationKey, args);
+
+Cleanup:
+ //Clean up sensitive data
+ ZERO_FILL(&sharedSecret, sizeof(sharedSecret));
+ ZERO_FILL(&conversationKey, sizeof(conversationKey));
+
+ return result;
+}
+