/* * Copyright (c) 2024 Vaughn Nugent * * Library: noscrypt * Package: noscrypt * File: noscrypt.c * * noscrypt is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation, either version 2 of the License, * or (at your option) any later version. * * noscrypt is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with noscrypt. If not, see http://www.gnu.org/licenses/. */ #include "noscrypt.h" #include #include //Setup mbedtls #include #include #include #include #include #define CHACHA_NONCE_SIZE 12 //Size of 12 is set by the cipher spec #define CHACHA_KEY_SIZE 32 #define HMAC_KEY_SIZE 32 /* * Local macro for secure zero buffer fill */ #define ZERO_FILL(x, size) mbedtls_platform_zeroize(x, size) //Include string for memmove #include #define MEMMOV(dst, src, size) memmove(dst, src, size) struct nc_expand_keys { uint8_t chacha_key[CHACHA_KEY_SIZE]; uint8_t chacha_nonce[CHACHA_NONCE_SIZE]; uint8_t hamc_key[HMAC_KEY_SIZE]; }; struct shared_secret { uint8_t value[NC_SHARED_SEC_SIZE]; }; struct conversation_key { uint8_t value[NC_CONV_KEY_SIZE]; }; struct message_key { uint8_t value[NC_MESSAGE_KEY_SIZE]; }; /* * Internal helper functions to do common structure conversions */ static inline int _convertToXonly(const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_xonly_pubkey* xonly) { DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure") DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure ") //Parse the public key into the x-only structure return secp256k1_xonly_pubkey_parse(ctx->secpCtx, xonly, compressedPubKey->key); } static int _convertToPubKey(const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_pubkey* pubKey) { int result; uint8_t compressed[NC_PUBKEY_SIZE + 1]; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure") DEBUG_ASSERT2(pubKey != NULL, "Expected valid secp256k1 public key structure") //Set the first byte to 0x02 to indicate a compressed public key compressed[0] = BIP340_PUBKEY_HEADER_BYTE; //Copy the compressed public key data into a new buffer (offset by 1 to store the header byte) MEMMOV((compressed + 1), compressedPubKey->key, NC_PUBKEY_SIZE); result = secp256k1_ec_pubkey_parse(ctx->secpCtx, pubKey, compressed, sizeof(compressed)); //zero everything ZERO_FILL(compressed, sizeof(compressed)); return result; } static inline int _convertFromXonly(const NCContext* ctx, const secp256k1_xonly_pubkey* xonly, NCPublicKey* compressedPubKey) { DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure.") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte pubkey structure") return secp256k1_xonly_pubkey_serialize(ctx->secpCtx, compressedPubKey->key, xonly); } /* * IMPL NOTES: * This callback function will be invoked by the ecdh function to hash the shared point. * * For nostr, this operation is defined in the new NIP-44 spec here: * https://github.com/nostr-protocol/nips/blob/master/44.md#encryption * * The x coordinate of the shared point is copied directly into the output buffer. No hashing is * performed here. The y coordinate is not used, and for this implementation, there is no data * pointer. */ static int _edhHashFuncInternal( unsigned char* output, const uint8_t* x32, const uint8_t* y32, void* data ) { ((void)y32); //unused for nostr ((void)data); DEBUG_ASSERT2(output != NULL, "Expected valid output buffer") DEBUG_ASSERT2(x32 != NULL, "Expected a valid public 32byte x-coodinate buffer") //Copy the x coordinate of the shared point into the output buffer MEMMOV(output, x32, 32); return 32; //Return the number of bytes written to the output buffer } static NCResult _computeSharedSecret( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* otherPk, struct shared_secret* sharedPoint ) { int result; secp256k1_pubkey pubKey; DEBUG_ASSERT(ctx != NULL) DEBUG_ASSERT(sk != NULL) DEBUG_ASSERT(otherPk != NULL) DEBUG_ASSERT(sharedPoint != NULL) //Recover pubkey from compressed public key data if (_convertToPubKey(ctx, otherPk, &pubKey) != 1) { return E_INVALID_ARG; } /* * Compute the shared point using the ecdh function. * * The above callback is invoked to "compute" the hash (it * copies the x coord) and it does not use the data pointer * so it is set to NULL. */ result = secp256k1_ecdh( ctx->secpCtx, (uint8_t*)sharedPoint, &pubKey, sk->key, &_edhHashFuncInternal, NULL ); //Clean up sensitive data ZERO_FILL(&pubKey, sizeof(secp256k1_pubkey)); return (NCResult)result; } static inline const mbedtls_md_info_t* _getSha256MdInfo(void) { const mbedtls_md_info_t* info; //Get sha256 md info for hdkf operations info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); DEBUG_ASSERT2(info != NULL, "Expected SHA256 md info struct to be valid") return info; } static inline NCResult _computeConversationKey( const NCContext* ctx, const mbedtls_md_info_t* mdInfo, const struct shared_secret* sharedSecret, struct conversation_key* ck ) { //Validate internal args DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(sharedSecret != NULL, "Expected a valid shared-point") DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md context") DEBUG_ASSERT2(ck != NULL, "Expected a valid conversation key") //Derive the encryption key (returns 0 on success so it can be cast to an NCResult) return (NCResult)mbedtls_hkdf_extract( mdInfo, Nip44ConstantSalt, sizeof(Nip44ConstantSalt), (uint8_t*)sharedSecret, //Shared secret is the input key NC_SHARED_SEC_SIZE, (uint8_t*)ck //Output produces a conversation key ); } /* * Explode the hkdf into the chacha key, chacha nonce, and hmac key. */ static inline void _expandKeysFromHkdf(const struct message_key* hkdf, struct nc_expand_keys* keys) { uint8_t* hkdfBytes; DEBUG_ASSERT2(hkdf != NULL, "Expected valid hkdf") hkdfBytes = (uint8_t*)hkdf; //Copy segments of the hkdf into the keys struct MEMMOV( keys->chacha_key, hkdfBytes, CHACHA_KEY_SIZE ); MEMMOV( keys->chacha_nonce, (hkdfBytes + CHACHA_KEY_SIZE), CHACHA_NONCE_SIZE ); MEMMOV( keys->hamc_key, (hkdfBytes + CHACHA_KEY_SIZE + CHACHA_NONCE_SIZE), HMAC_KEY_SIZE ); } static int _chachaEncipher(const struct nc_expand_keys* keys, NCCryptoData* args) { int result; mbedtls_chacha20_context chachaCtx; DEBUG_ASSERT2(keys != NULL, "Expected valid keys") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") DEBUG_ASSERT2(sizeof(keys->chacha_nonce) == 12, "Chacha nonce must be 12 exactly bytes in length") //Init the chacha context mbedtls_chacha20_init(&chachaCtx); //Set the key and nonce result = mbedtls_chacha20_setkey(&chachaCtx, keys->chacha_key); DEBUG_ASSERT2(result == 0, "Expected chacha setkey to return 0") result = mbedtls_chacha20_starts(&chachaCtx, keys->chacha_nonce, 0); DEBUG_ASSERT2(result == 0, "Expected chacha starts to return 0") //Encrypt the plaintext result = mbedtls_chacha20_update(&chachaCtx, args->dataSize, args->inputData, args->outputData); DEBUG_ASSERT2(result == 0, "Expected chacha update to return 0") //Clean up the chacha context mbedtls_chacha20_free(&chachaCtx); return result; } static inline NCResult _getMessageKey( const mbedtls_md_info_t* mdInfo, const struct conversation_key* converstationKey, const uint8_t* nonce, size_t nonceSize, struct message_key* messageKey ) { DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md context") DEBUG_ASSERT2(nonce != NULL, "Expected valid nonce buffer") DEBUG_ASSERT2(converstationKey != NULL, "Expected valid conversation key") DEBUG_ASSERT2(messageKey != NULL, "Expected valid message key buffer") //Another HKDF to derive the message key with nonce return (NCResult)mbedtls_hkdf_expand( mdInfo, (uint8_t*)converstationKey, //Conversation key is the input key NC_CONV_KEY_SIZE, nonce, nonceSize, (uint8_t*)messageKey, //Output produces a message key NC_MESSAGE_KEY_SIZE ); } static inline NCResult _encryptEx( const NCContext* ctx, const mbedtls_md_info_t* mdINfo, const struct conversation_key* ck, NCCryptoData* args ) { NCResult result; struct message_key messageKey; struct nc_expand_keys cipherKeys; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") //Failure, bail out if ((result = _getMessageKey(mdINfo, ck, args->nonce, NC_ENCRYPTION_NONCE_SIZE, &messageKey)) != NC_SUCCESS) { goto Cleanup; } //Expand the keys from the hkdf so we can use them in the cipher _expandKeysFromHkdf(&messageKey, &cipherKeys); //CHACHA20 result = _chachaEncipher(&cipherKeys, args); Cleanup: //Clean up sensitive data ZERO_FILL(&messageKey, sizeof(messageKey)); return result; } static inline NCResult _decryptEx( const NCContext* ctx, const mbedtls_md_info_t* mdInfo, const struct conversation_key* ck, NCCryptoData* args ) { NCResult result; struct message_key messageKey; struct nc_expand_keys cipherKeys; //Assume message key buffer is the same size as the expanded key struct DEBUG_ASSERT2(sizeof(messageKey) == sizeof(cipherKeys), "Message key size and expanded key sizes do not match") DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") DEBUG_ASSERT2(mdInfo != NULL, "Expected valid md info struct") //Failure to get message keys, bail out if ((result = _getMessageKey(mdInfo, ck, args->nonce, NC_ENCRYPTION_NONCE_SIZE, &messageKey)) != NC_SUCCESS) { goto Cleanup; } //Expand the keys from the hkdf so we can use them in the cipher _expandKeysFromHkdf(&messageKey, &cipherKeys); //CHACHA20 result = _chachaEncipher(&cipherKeys, args); Cleanup: //Clean up sensitive data ZERO_FILL(&messageKey, sizeof(messageKey)); return result; } /* * Compute the sha256 digest of the data. This function should always return 0 * on success. */ static inline int _computeSha256Digest(const uint8_t* data, size_t length, uint8_t digest[32]) { int result; mbedtls_sha256_context sha256; DEBUG_ASSERT2(data != NULL, "Expected valid data buffer") DEBUG_ASSERT2(digest != NULL, "Expected valid digest buffer") //Init the sha256 context mbedtls_sha256_init(&sha256); //starting context should never fail result = mbedtls_sha256_starts(&sha256, 0); DEBUG_ASSERT2(result == 0, "Expected sha256 starts to return 0") //may fail if the data is invalid if ((result = mbedtls_sha256_update(&sha256, data, length)) != 0) { goto Cleanup; } //Finishing context should never fail result = mbedtls_sha256_finish(&sha256, digest); Cleanup: //Always free the context mbedtls_sha256_free(&sha256); return result; } /* * EXTERNAL API FUNCTIONS */ NC_EXPORT uint32_t NC_CC NCGetContextStructSize(void) { return sizeof(NCContext); } NC_EXPORT NCResult NC_CC NCInitContext( NCContext* ctx, const uint8_t entropy[32] ) { CHECK_NULL_PTR(ctx) CHECK_NULL_PTR(entropy) ctx->secpCtx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); //Randomize once on init return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCReInitContext( NCContext* ctx, const uint8_t entropy[32] ) { CHECK_NULL_PTR(ctx) CHECK_INVALID_ARG(ctx->secpCtx) CHECK_INVALID_ARG(entropy) //Only randomize again return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCDestroyContext(NCContext* ctx) { CHECK_NULL_ARG(ctx, 0); CHECK_INVALID_ARG(ctx->secpCtx); //Destroy secp256k1 context secp256k1_context_destroy(ctx->secpCtx); //Wipe the context ZERO_FILL(ctx, sizeof(NCContext)); return NC_SUCCESS; } //KEY Functions NC_EXPORT NCResult NC_CC NCGetPublicKey( const NCContext* ctx, const NCSecretKey* sk, NCPublicKey* pk ) { int result; secp256k1_keypair keyPair; secp256k1_xonly_pubkey xonly; CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_INVALID_ARG(ctx->secpCtx) if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1) { return E_INVALID_ARG; } //Generate the x-only public key, docs say this should always return 1 result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair); DEBUG_ASSERT2(result == 1, "Expected x-only kepair to ALWAYS return 1") //Convert to compressed pubkey result = _convertFromXonly(ctx, &xonly, pk); DEBUG_ASSERT2(result == 1, "Expected x-only pubkey serialize to return 1") //Clean out keypair ZERO_FILL(&keyPair, sizeof(secp256k1_keypair)); ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey)); return NC_SUCCESS; } NC_EXPORT NCResult NC_CC NCValidateSecretKey( const NCContext* ctx, const NCSecretKey* sk ) { CHECK_NULL_PTR(ctx) CHECK_NULL_PTR(sk) CHECK_INVALID_ARG(ctx->secpCtx) //Validate the secret key return secp256k1_ec_seckey_verify(ctx->secpCtx, sk->key) ? NC_SUCCESS : E_INVALID_ARG; } //Ecdsa Functions NC_EXPORT NCResult NC_CC NCSignDigest( const NCContext* ctx, const NCSecretKey* sk, const uint8_t random32[32], const uint8_t digest32[32], uint8_t sig64[64] ) { int result; secp256k1_keypair keyPair; secp256k1_xonly_pubkey xonly; //Validate arguments CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(random32, 2) CHECK_NULL_ARG(digest32, 3) CHECK_NULL_ARG(sig64, 4) CHECK_INVALID_ARG(ctx->secpCtx) //Generate the keypair if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1) { return E_INVALID_ARG; } //Sign the digest result = secp256k1_schnorrsig_sign32(ctx->secpCtx, sig64, digest32, &keyPair, random32); DEBUG_ASSERT2(result == 1, "Expected schnorr signature to return 1"); //x-only public key from keypair so the signature can be verified result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair); DEBUG_ASSERT2(result == 1, "Expected x-only public key to ALWAYS return 1"); //Verify the signature is valid result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly); //cleanup any sensitive data ZERO_FILL(&keyPair, sizeof(secp256k1_keypair)); ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey)); return result == 1 ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCSignData( const NCContext* ctx, const NCSecretKey* sk, const uint8_t random32[32], const uint8_t* data, size_t dataSize, uint8_t sig64[64] ) { uint8_t digest[32]; CHECK_NULL_ARG(data, 2) //CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 3) //Compute sha256 of the data before signing if(_computeSha256Digest(data, dataSize, digest) != 0) { return E_INVALID_ARG; } //Sign the freshly computed digest return NCSignDigest(ctx, sk, random32, digest, sig64); } NC_EXPORT NCResult NC_CC NCVerifyDigest( const NCContext* ctx, const NCPublicKey* pk, const uint8_t digest32[32], const uint8_t sig64[64] ) { int result; secp256k1_xonly_pubkey xonly; DEBUG_ASSERT(&xonly != NULL) CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sig64, 1) CHECK_NULL_ARG(digest32, 2) CHECK_NULL_ARG(pk, 3) CHECK_INVALID_ARG(ctx->secpCtx) //recover the x-only key from a compressed public key if(_convertToXonly(ctx, pk, &xonly) != 1) { return E_INVALID_ARG; } //Verify the signature result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly); //cleanup any sensitive data ZERO_FILL(&xonly, sizeof(secp256k1_xonly_pubkey)); return result == 1 ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCVerifyData( const NCContext* ctx, const NCPublicKey* pk, const uint8_t* data, const size_t dataSize, uint8_t sig64[64] ) { uint8_t digest[32]; CHECK_NULL_ARG(data, 2) //CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 3) //Compute sha256 of the data before verifying if (_computeSha256Digest(data, dataSize, digest) != 0) { return E_INVALID_ARG; } //Verify the freshly computed digest return NCVerifyDigest(ctx, pk, digest, sig64); } //ECDH Functions NC_EXPORT NCResult NC_CC NCGetSharedSecret( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* otherPk, uint8_t sharedPoint[NC_SHARED_SEC_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(otherPk, 2) CHECK_NULL_ARG(sharedPoint, 3) CHECK_INVALID_ARG(ctx->secpCtx) return _computeSharedSecret( ctx, sk, otherPk, (struct shared_secret*)sharedPoint ); } NC_EXPORT NCResult NC_CC NCGetConversationKeyEx( const NCContext* ctx, const uint8_t sharedPoint[NC_SHARED_SEC_SIZE], uint8_t conversationKey[NC_CONV_KEY_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sharedPoint, 1) CHECK_NULL_ARG(conversationKey, 2) CHECK_INVALID_ARG(ctx->secpCtx) //Cast the shared point to the shared secret type return _computeConversationKey( ctx, _getSha256MdInfo(), (struct shared_secret*)sharedPoint, (struct conversation_key*)conversationKey ); } NC_EXPORT NCResult NC_CC NCGetConversationKey( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, uint8_t conversationKey[NC_CONV_KEY_SIZE] ) { NCResult result; struct shared_secret sharedSecret; const mbedtls_md_info_t* mdInfo; CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(conversationKey, 3) CHECK_INVALID_ARG(ctx->secpCtx) mdInfo = _getSha256MdInfo(); //Compute the shared point if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } result = _computeConversationKey( ctx, mdInfo, &sharedSecret, (struct conversation_key*)conversationKey ); Cleanup: //Clean up sensitive data ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); return result; } NC_EXPORT NCResult NC_CC NCEncryptEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCCryptoData* args ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(conversationKey, 1) CHECK_NULL_ARG(args, 2) //Validate the context CHECK_INVALID_ARG(ctx->secpCtx) //Validte ciphertext/plaintext CHECK_INVALID_ARG(args->inputData) CHECK_INVALID_ARG(args->outputData) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) return _encryptEx( ctx, _getSha256MdInfo(), (struct conversation_key*)conversationKey, args ); } NC_EXPORT NCResult NC_CC NCEncrypt( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, NCCryptoData* args ) { NCResult result; const mbedtls_md_info_t* mdInfo; struct shared_secret sharedSecret; struct conversation_key ck; CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(args, 3) //Validate the context CHECK_INVALID_ARG(ctx->secpCtx) //Validate input/output data CHECK_INVALID_ARG(args->inputData) CHECK_INVALID_ARG(args->outputData) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) mdInfo = _getSha256MdInfo(); //Compute the shared point if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } //Compute the conversation key from secret and pubkic keys if ((result = _computeConversationKey(ctx, mdInfo, &sharedSecret, &ck)) != NC_SUCCESS) { goto Cleanup; } result = _encryptEx(ctx, mdInfo, &ck, args); Cleanup: //Clean up sensitive data ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); ZERO_FILL(&ck, sizeof(ck)); return result; } NC_EXPORT NCResult NC_CC NCDecryptEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCCryptoData* args ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(conversationKey, 1) CHECK_NULL_ARG(args, 2) //Validate the context CHECK_INVALID_ARG(ctx->secpCtx) //Validte ciphertext/plaintext CHECK_INVALID_ARG(args->inputData) CHECK_INVALID_ARG(args->outputData) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_DEC_MESSAGE_SIZE, NIP44_MAX_DEC_MESSAGE_SIZE, 3) return _decryptEx( ctx, _getSha256MdInfo(), (struct conversation_key*)conversationKey, args ); } NC_EXPORT NCResult NC_CC NCDecrypt( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, NCCryptoData* args ) { NCResult result; struct shared_secret sharedSecret; struct conversation_key conversationKey; const mbedtls_md_info_t* mdInfo; CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(args, 3) //Validate the context CHECK_INVALID_ARG(ctx->secpCtx) //Validte ciphertext/plaintext CHECK_INVALID_ARG(args->inputData) CHECK_INVALID_ARG(args->outputData) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_DEC_MESSAGE_SIZE, NIP44_MAX_DEC_MESSAGE_SIZE, 3) mdInfo = _getSha256MdInfo(); if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } if ((result = _computeConversationKey(ctx, mdInfo, &sharedSecret, &conversationKey)) != NC_SUCCESS) { goto Cleanup; } result = _decryptEx(ctx, mdInfo, &conversationKey, args); Cleanup: //Clean up sensitive data ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); ZERO_FILL(&conversationKey, sizeof(conversationKey)); return result; }