aboutsummaryrefslogtreecommitdiff
path: root/src/noscryptutil.c
blob: 333ef74bd78796adfe5c54ffcdb2bd3588378845 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
/*
* Copyright (c) 2024 Vaughn Nugent
*
* Package: noscrypt
* File: noscryptutil.h
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or  (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with noscrypt. If not, see http://www.gnu.org/licenses/.
*/


#include <stdlib.h>

#include "nc-util.h"
#include "nc-crypto.h"

#include <noscryptutil.h>

/*
* Validation macros
*/

#ifdef NC_EXTREME_COMPAT
	#error "Utilities library must be disabled when using extreme compat mode"
#endif /* NC_EXTREME_COMPAT */

#define MIN_PADDING_SIZE		0x20u
#define NIP44_VERSION_SIZE		0x01u
#define NIP44_PT_LEN_SIZE		sizeof(uint16_t)
#define NIP44_NONCE_SIZE		NC_NIP44_IV_SIZE

/*
* minimum size for a valid nip44 payload
* 1 byte version + 32 byte nonce + 32 byte mac + 2 byte ptSize + 32bytes minimum length
*/
#define NIP44_MIN_PAYLOAD_SIZE  (NIP44_VERSION_SIZE + 0x20 + 0x02 + 0x20 + 0x02)

/*
* Max payload size is the maximum size of the encrypted message
* 1 byte version + 32 byte nonce + 32 byte mac + maximum ciphertext size
*/
#define NIP44_MAX_PAYLOAD_SIZE (NIP44_VERSION_SIZE + 0x20 + 0x20 + NIP44_MAX_ENC_MESSAGE_SIZE)

/*
* The minimum ciphertext size is the minimum padded size + the minimum
* size of the plaintext length field
*/
#define NIP44_MIN_CIPHERTEXT_SIZE (MIN_PADDING_SIZE + NIP44_PT_LEN_SIZE)


#define _nc_mem_free(x) if(x != NULL) { free(x); x = NULL; }
#define _nc_mem_alloc(elements, size) calloc(elements, size)
#define ZERO_FILL ncCryptoSecureZero

#ifndef NC_INPUT_VALIDATION_OFF
	#define CHECK_INVALID_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_INVALID_ARG, argPos);
	#define CHECK_NULL_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_NULL_PTR, argPos);
	#define CHECK_ARG_RANGE(x, min, max, argPos) if(x < min || x > max) return NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, argPos);
	#define CHECK_ARG_IS(exp, argPos) if(!(exp)) return NCResultWithArgPosition(E_INVALID_ARG, argPos);
#else
	/* empty macros */
	#define CHECK_INVALID_ARG(x)
	#define CHECK_NULL_ARG(x, argPos) 
	#define CHECK_ARG_RANGE(x, min, max, argPos) 
	#define CHECK_ARG_IS(is, expected, argPos)
#endif /* !NC_DISABLE_INPUT_VALIDATION */

#ifdef _NC_IS_WINDOWS
	
	#include <math.h>

	/* performs a log2 on integer types */
	#define _math_int_log2(x)	(uint32_t)log2((double)x)

#else
	/* 
	* GCC/clang does not expose log2 so we can use the __builtin_clz
	* to find leading zeros of an integer and subtract that from 31 
	* (bit positions) for int32 
	*/
	static _nc_fn_inline uint32_t _math_int_log2(uint32_t val)
	{
		DEBUG_ASSERT(val < UINT32_MAX);

		return 31 - __builtin_clz(val);
	}
#endif

/* Currently were on nip44 version 2 */
static const uint8_t Nip44VersionValue[1] = { 0x02u };

struct cipher_buffer_state {
	
	cspan_t input;
	span_t output;

	cspan_t actualOutput;
};

struct nc_util_enc_struct {

	uint32_t _flags;

	NCEncryptionArgs encArgs;

	struct cipher_buffer_state buffer;
};

static _nc_fn_inline span_t _ncUtilAllocSpan(uint32_t count, size_t size)
{
	span_t span;

#if SIZE_MAX < UINT32_MAX

	if (count > SIZE_MAX)
	{
		return span;
	}

#endif

	ncSpanInit(
		&span, 
		_nc_mem_alloc((size_t)count, size),
		(uint32_t)count
	);

	return span;
}

static _nc_fn_inline void _ncUtilZeroSpan(span_t span)
{
	ZERO_FILL(span.data, span.size);
}

static _nc_fn_inline void _ncUtilFreeSpan(span_t span)
{
	_nc_mem_free(span.data);
}

static _nc_fn_inline uint32_t _calcNip44PtPadding(uint32_t plaintextSize)
{
	uint32_t chunk, nextPower, factor;

	/*
	* Taken from https://github.com/nostr-protocol/nips/blob/master/44.md
	*
	* I believe the idea is to add consisten padding for some better 
	* disgusing of the plainText data.
	*/

	if (plaintextSize <= MIN_PADDING_SIZE)
	{
		return MIN_PADDING_SIZE;
	}

	/* Safe to subtract because pt > 0 */
	nextPower = _math_int_log2(plaintextSize - 1);

	nextPower += 1u;

	nextPower = 1 << nextPower;

	if (nextPower <= 256u)
	{
		chunk = 32u;
	}
	else 
	{
		chunk = nextPower / 8u;
	}
	
	factor = plaintextSize - 1;

	factor /= chunk;

	factor += 1;

	return chunk * factor;
}

static _nc_fn_inline uint32_t _calcNip44TotalOutSize(uint32_t inputSize)
{
	uint32_t bufferSize;

	/*
	* Buffer size for nip44 is calculated as follows:
	*   1 byte for the version
	*   32 bytes for the nonce
	*   2 bytes for the length of the plainText
	*   ... padding size
	*   32 bytes for the MAC
	*/

	bufferSize = NIP44_VERSION_SIZE;

	bufferSize += NIP44_NONCE_SIZE;

	bufferSize += NIP44_PT_LEN_SIZE;

	bufferSize += _calcNip44PtPadding(inputSize);

	bufferSize += NC_ENCRYPTION_MAC_SIZE;

	return bufferSize;
}

static _nc_fn_inline span_t _nip44GetMacData(span_t payload)
{
	DEBUG_ASSERT(payload.size > NIP44_VERSION_SIZE + NC_ENCRYPTION_MAC_SIZE);

	/*
	* The nip44 mac is computed over the nonce+encrypted ciphertext
	* 
	* the ciphertext is the entire message buffer, so it includes 
	* version, nonce, data, padding, and mac space available.
	* 
	* This function will return a span that points to the nonce+data 
	* segment of the buffer for mac computation.
	* 
	* The nonce sits directly after the version byte, ct is after,
	* and the remaining 32 bytes are for the mac. So that means 
	* macData = ct.size - version.size + mac.size
	*/

	return ncSpanSlice(
		payload,
		NIP44_VERSION_SIZE,
		ncSpanGetSize(payload) - (NIP44_VERSION_SIZE + NC_ENCRYPTION_MAC_SIZE)
	);
}

static _nc_fn_inline span_t _nip44GetMacOutput(span_t payload)
{
	DEBUG_ASSERT(payload.size > NC_ENCRYPTION_MAC_SIZE);

	/*
	* Mac is the final 32 bytes of the ciphertext buffer
	*/
	return ncSpanSlice(
		payload,
		ncSpanGetSize(payload) - NC_ENCRYPTION_MAC_SIZE,
		NC_ENCRYPTION_MAC_SIZE
	);
}

static _nc_fn_inline int _nip44ParseSegments(
	cspan_t payload, 
	cspan_t* nonce,
	cspan_t* mac,
	cspan_t* macData,
	cspan_t* cipherText
)
{
	if (ncSpanGetSizeC(payload) < NIP44_MIN_PAYLOAD_SIZE)
	{
		return 0;
	}

	/* slice after the version and before the mac segments */
	*nonce = ncSpanSliceC(
		payload,
		NIP44_VERSION_SIZE,
		NIP44_NONCE_SIZE
	);

	/*
	* Mac is the final 32 bytes of the ciphertext buffer
	*/
	*mac = ncSpanSliceC(
		payload,
		ncSpanGetSizeC(payload) - NC_ENCRYPTION_MAC_SIZE,
		NC_ENCRYPTION_MAC_SIZE
	);

	/*
	* The mac data is the nonce+ct segment of the buffer for mac computation.
	*/
	*macData = ncSpanSliceC(
		payload,
		NIP44_VERSION_SIZE,
		ncSpanGetSizeC(payload) - (NIP44_VERSION_SIZE + NC_ENCRYPTION_MAC_SIZE)
	);

	/*
	* Ciphertext is after the nonce segment and before the mac segment
	*/
	*cipherText = ncSpanSliceC(
		payload,
		NIP44_VERSION_SIZE + NIP44_NONCE_SIZE,
		ncSpanGetSizeC(payload) - (NIP44_VERSION_SIZE + NIP44_NONCE_SIZE + NC_ENCRYPTION_MAC_SIZE)
	);

	return 1;
}


static _nc_fn_inline void _cipherPublishOutput(NCUtilCipherContext* buffer, uint32_t offset, uint32_t size)
{
	span_t slice;

	DEBUG_ASSERT(ncSpanIsValid(buffer->buffer.output));

	if (size == 0)
	{
		ncSpanInitC(&buffer->buffer.actualOutput, NULL, 0);
	}
	else
	{
		/* use slice for debug guards */
		slice = ncSpanSlice(buffer->buffer.output, offset, size);

		/* init readonly span from mutable */
		ncSpanInitC(
			&buffer->buffer.actualOutput, 
			ncSpanGetOffset(slice, 0), 
			ncSpanGetSize(slice)
		);
	}	
}

/*
* I want the encryption/decyption functions to be indempodent
* meaning all mutations that happen can be repeated without
* side effects. IE no perminent state changes that can't be
* undone.
*/

static NCResult _nip44EncryptCompleteCore(
	const NCContext* libContext,
	const NCSecretKey* sk,
	const NCPublicKey* pk,
	NCUtilCipherContext* state
)
{

	NCResult result;
	cspan_t plainText;
	span_t macData, macOutput, message;
	uint32_t outPos;
	uint8_t ptSize[NIP44_PT_LEN_SIZE];
	uint8_t hmacKeyOut[NC_ENCRYPTION_MAC_SIZE];
	NCEncryptionArgs encArgs;

	outPos = 0;
	encArgs = state->encArgs;
	plainText = state->buffer.input;
	
	/*
	* Output buffer may be reused for multiple operations
	* so it may be larger than the actual output size but 
	* it is always guaranteed to be large enough to hold the
	* output data.
	* 
	* slice has debug guards to ensure output is large enough
	*/
	message = ncSpanSlice(
		state->buffer.output, 
		0, 
		_calcNip44TotalOutSize(plainText.size)
	);

	DEBUG_ASSERT(encArgs.version == NC_ENC_VERSION_NIP44);

	ZERO_FILL(hmacKeyOut, sizeof(hmacKeyOut));

	/* Get the nonce/iv size so we know how much nonce data to write */
	result = NCUtilCipherGetIvSize(state);
	DEBUG_ASSERT(result > 0);

	/* Start by appending the version number */
	ncSpanAppend(message, &outPos, Nip44VersionValue, sizeof(Nip44VersionValue));

	/* next is nonce data */
	ncSpanAppend(message, &outPos, encArgs.nonceData, (uint32_t)result);

	/* 
	* Assert the output points to the end of the nonce segment 
	* for nip44 this is exactly 33 bytes. This assert also doubles
	* to check the output of NCUtilCipherGetIvSize() to ensure
	* it's returning the correct size for nip44
	*/
	DEBUG_ASSERT(outPos == 1 + NIP44_NONCE_SIZE);

	/*
	* Assign the hmac key from the stack buffer. Since the args structure
	* is copied, it won't leak the address to the stack buffer.
	*
	* Should always return success for nip44 because all properties are valid
	* addresses.
	*/

	result = NCEncryptionSetPropertyEx(
		&encArgs,
		NC_ENC_SET_NIP44_MAC_KEY,
		hmacKeyOut,
		sizeof(hmacKeyOut)
	);

	DEBUG_ASSERT(result == NC_SUCCESS);

	/*
	* So this is the tricky part. The encryption operation appens directly
	* on the ciphertext segment
	*
	* All current implementations allow overlapping input and output buffers
	* so we can assign the pt segment on the encryption args
	*/

	/*
	* Since the message size and padding bytes will get encrypted,
	* the buffer should currently point to the start of the encryption segment
	*
	* The size of the data to encrypt is the padded size plus the size of the
	* plainText size field.
	*/

	result = NCEncryptionSetData(
		&encArgs,
		ncSpanGetOffset(message, outPos),	/* in place encryption */
		ncSpanGetOffset(message, outPos),
		NIP44_PT_LEN_SIZE + _calcNip44PtPadding(plainText.size) 	/* Plaintext + pt size must be encrypted */
	);

	DEBUG_ASSERT(result == NC_SUCCESS);

	/* big endian plaintext size */
	ptSize[0] = (uint8_t)(ncSpanGetSizeC(plainText) >> 8);
	ptSize[1] = (uint8_t)(ncSpanGetSizeC(plainText) & 0xFF);

	/*
	* Written position must point to the end of the padded ciphertext
	* area which the plaintext is written to.
	*
	* The plaintext data will be encrypted in place. The encrypted
	* data is the entired padded region containing the leading byte count
	* the plaintext data, followed by zero padding.
	*/

	ncSpanWrite(message, outPos, ptSize, sizeof(ptSize));

	ncSpanWrite(
		message,
		outPos + NIP44_PT_LEN_SIZE,		/* write pt directly after length */
		ncSpanGetOffsetC(plainText, 0),
		ncSpanGetSizeC(plainText)
	);

	/* 
	* Move position pointer directly after final padding bytes
	*/
	outPos += encArgs.dataSize;

	result = NCEncrypt(libContext, sk, pk, &encArgs);

	if (result != NC_SUCCESS)
	{
		return result;
	}

	/*
		MAC is computed over the nonce+encrypted data
		this helper captures that data segment into a span
	*/

	macData = _nip44GetMacData(message);
	macOutput = _nip44GetMacOutput(message);

	result = NCComputeMac(
		libContext,
		hmacKeyOut,
		ncSpanGetOffset(macData, 0),
		ncSpanGetSize(macData),
		ncSpanGetOffset(macOutput, 0)
	);

	if (result != NC_SUCCESS)
	{
		return result;
	}

	outPos += NC_ENCRYPTION_MAC_SIZE;

	DEBUG_ASSERT2(outPos == ncSpanGetSize(message), "Buffer under/overflow detected");

	/* publish all message bytes to output */
	_cipherPublishOutput(state, 0, outPos);

	/* zero hmac key before returning */
	ZERO_FILL(hmacKeyOut, sizeof(hmacKeyOut));

	return NC_SUCCESS;
}

static NCResult _nip44DecryptCompleteCore(
	const NCContext* libContext,
	const NCSecretKey* recvKey,
	const NCPublicKey* sendKey,
	NCUtilCipherContext* state
)
{
	NCResult result;
	NCMacVerifyArgs macArgs;
	NCEncryptionArgs encArgs;
	cspan_t macData, macValue, nonce, payload, cipherText;
	span_t output;
	uint16_t ptSize;

	DEBUG_ASSERT(libContext && recvKey && sendKey && state);
	DEBUG_ASSERT(state->encArgs.version == NC_ENC_VERSION_NIP44);
	DEBUG_ASSERT(ncSpanGetSizeC(state->buffer.input) >= NIP44_MIN_PAYLOAD_SIZE);

	/* ensure decryption mode */
	DEBUG_ASSERT(state->_flags & NC_UTIL_CIPHER_MODE_DECRYPT);

	/* store local stack copy for safe mutation */
	encArgs = state->encArgs;
	payload = state->buffer.input;
	output = state->buffer.output;

	/*
	* Copy the input buffer to the output buffer because the 
	* decryption happens in-place and needs a writable buffer
	* 
	* After the operation is complete, we will assign the actual plaintext 
	* data to the actual output buffer
	*/

	DEBUG_ASSERT2(ncSpanIsValid(output), "Output buffer was not allocated");

	if (!_nip44ParseSegments(payload, &nonce, &macValue, &macData, &cipherText))
	{
		return E_CIPHER_INVALID_FORMAT;
	}

	/* Verify mac if the user allowed it */
	if ((state->_flags & NC_UTIL_CIPHER_MAC_NO_VERIFY) == 0)
	{
		DEBUG_ASSERT(ncSpanGetSizeC(macValue) == NC_ENCRYPTION_MAC_SIZE);
		DEBUG_ASSERT(ncSpanGetSizeC(macData) > NIP44_NONCE_SIZE + MIN_PADDING_SIZE);

		/* Assign the mac data to the mac verify args */
		macArgs.mac32 = ncSpanGetOffsetC(macValue, 0);
		macArgs.nonce32 = ncSpanGetOffsetC(nonce, 0);
		
		/* message for verifying a mac in nip44 is the nonce+ciphertext */
		macArgs.payload = ncSpanGetOffsetC(macData, 0);
		macArgs.payloadSize = ncSpanGetSizeC(macData);

		/* Verify the mac */
		result = NCVerifyMac(libContext, recvKey, sendKey, &macArgs);

		/* When the mac is invlaid */
		if (result == E_OPERATION_FAILED)
		{
			return E_CIPHER_MAC_INVALID;
		}
		/* argument errors */
		else if (result != NC_SUCCESS)
		{
			return result;
		}
	}

	/* 
	* manually assign nonce because it's a constant pointer which
	* is not allowed when calling setproperty 
	*/
	encArgs.nonceData = ncSpanGetOffsetC(nonce, 0);

	DEBUG_ASSERT2(cipherText.size >= MIN_PADDING_SIZE, "Cipertext segment was parsed incorrectly. Too small");
	
	result = NCEncryptionSetData(
		&encArgs,
		ncSpanGetOffsetC(cipherText, 0),
		ncSpanGetOffset(output, 0),			/*decrypt ciphertext and write directly to the output buffer */
		ncSpanGetSizeC(cipherText)
	);

	DEBUG_ASSERT(result == NC_SUCCESS);

	/*
	* If decryption was successful, the data should be written 
	* directly to the output buffer
	*/
	result = NCDecrypt(libContext, recvKey, sendKey, &encArgs);

	if (result != NC_SUCCESS)
	{
		return result;
	}

	/*
	* Parse CT length and assign the output buffer.
	* 
	* PT size is stored at the beginning of the ciphertext
	* segment and is 2 bytes in size, big endian.
	*/

	ptSize = (uint16_t)(output.data[0] << 8 | output.data[1]);

	/*
	* If the PT is corrupted or set maliciously, it can overrun
	* the current buffer. The PT size must be less than the
	* ciphertext size.
	*/
	if (!ncSpanIsValidRange(output, NIP44_PT_LEN_SIZE, ptSize))
	{
		return E_OPERATION_FAILED;
	}

	/*
	* actual output span should now point to the decrypted plaintext
	* data segment
	*/
	_cipherPublishOutput(state, NIP44_PT_LEN_SIZE, ptSize);

	DEBUG_ASSERT(ncSpanGetSizeC(state->buffer.actualOutput) < ncSpanGetSizeC(cipherText));

	return NC_SUCCESS;
}

NC_EXPORT NCResult NC_CC NCUtilGetEncryptionPaddedSize(uint32_t encVersion, uint32_t plaintextSize)
{
	switch (encVersion)
	{
	default:
		return E_VERSION_NOT_SUPPORTED;

	case NC_ENC_VERSION_NIP04:
		return plaintextSize;

	case NC_ENC_VERSION_NIP44:

		/*
		* Ensure the plaintext size if a nip44 message does not exceed the maximum size
		*/
		CHECK_ARG_IS(plaintextSize - 1 <= NIP44_MAX_ENC_MESSAGE_SIZE, 1);

		return (NCResult)(_calcNip44PtPadding(plaintextSize));
	}
}

NC_EXPORT NCResult NC_CC NCUtilGetEncryptionBufferSize(uint32_t encVersion, uint32_t plaintextSize)
{

	switch (encVersion)
	{
	default:
		return E_VERSION_NOT_SUPPORTED;

		/*
		* NIP-04 simply uses AES to 1:1 encrypt the plainText
		* to ciphertext.
		*/
	case NC_ENC_VERSION_NIP04:
		return plaintextSize;

	case NC_ENC_VERSION_NIP44:
		return (NCResult)(_calcNip44TotalOutSize(plaintextSize));
	}
}


NC_EXPORT NCContext* NC_CC NCUtilContextAlloc(void)
{
	/* Dynamically allocate context aligned and zeroed */
	return (NCContext*)_nc_mem_alloc(1, NCGetContextStructSize());
}


NC_EXPORT void NC_CC NCUtilContextFree(NCContext* ctx)
{
	_nc_mem_free(ctx);
}


NC_EXPORT NCUtilCipherContext* NC_CC NCUtilCipherAlloc(uint32_t encVersion, uint32_t flags)
{
	NCUtilCipherContext* encCtx;

	/*
	* Alloc context on heap
	*/
	encCtx = (NCUtilCipherContext*)_nc_mem_alloc(1, sizeof(NCUtilCipherContext));

	if (encCtx != NULL)
	{
		/* 
		* Technically I should be using the NCEncSetProperty but this 
		* is an acceptable shortcut for now, may break in future 
		*/
		encCtx->encArgs.version = encVersion;
		encCtx->_flags = flags;
	}

	return encCtx;
}

NC_EXPORT void NC_CC NCUtilCipherFree(NCUtilCipherContext* encCtx)
{
	if (!encCtx) 
	{
		return;
	}

	/*
	* If zero on free flag is set, we can zero all output memory 
	* before returning the buffer back to the heap
	*/
	if ((encCtx->_flags & NC_UTIL_CIPHER_ZERO_ON_FREE) > 0 && ncSpanIsValid(encCtx->buffer.output)) 
	{
		_ncUtilZeroSpan(encCtx->buffer.output);
	}

	/* Free output buffers (null buffers are allowed) */
	_ncUtilFreeSpan(encCtx->buffer.output);

	/* context can be released */
	_nc_mem_free(encCtx);
}

NC_EXPORT NCResult NC_CC NCUtilCipherInit(
	NCUtilCipherContext* encCtx,
	const uint8_t* inputData,
	uint32_t inputSize
)
{
	NCResult outputSize;

	CHECK_NULL_ARG(encCtx, 0);
	CHECK_NULL_ARG(inputData, 1);

	if ((encCtx->_flags & NC_UTIL_CIPHER_MODE) == NC_UTIL_CIPHER_MODE_DECRYPT)
	{
		/*
		* Validate the input data for proper format for 
		* the current state version
		*/
		switch (encCtx->encArgs.version)
		{
		case NC_ENC_VERSION_NIP44:
		{
			if (inputSize < NIP44_MIN_PAYLOAD_SIZE)
			{
				return E_CIPHER_BAD_INPUT_SIZE;
			}

			if (inputSize > NIP44_MAX_PAYLOAD_SIZE)
			{
				return E_CIPHER_BAD_INPUT_SIZE;
			}

			/* Ensure the first byte is a valid version */
			if (inputData[0] != Nip44VersionValue[0])
			{
				return E_VERSION_NOT_SUPPORTED;
			}

			break;
		}
		default:
			return E_VERSION_NOT_SUPPORTED;
		}

		/*
		* Alloc a the output buffer to be the same size as the input
		* data for decryption because the output will always be equal
		* or smaller than the input data. This is an over-alloc but 
		* that should be fine
		*/

		outputSize = inputSize;
	}
	else
	{
		/*
		* Calculate the correct output size to store the encryption
		* data for the given state version
		*/
		outputSize = NCUtilGetEncryptionBufferSize(encCtx->encArgs.version, inputSize);

		if (outputSize < 0)
		{
			return E_CIPHER_BAD_INPUT_SIZE;
		}
	}

	DEBUG_ASSERT(outputSize > 0);

	/*
	* If the buffer was previously allocated, the reuseable flag
	* must be set to allow the buffer to be re-used for another
	* operation.
	*/

	if (ncSpanIsValid(encCtx->buffer.output))
	{
		CHECK_ARG_IS((encCtx->_flags & NC_UTIL_CIPHER_REUSEABLE) > 0, 0);

		/*
		* if the existing buffer is large enough to hold the new 
		* data reuse it, otherwise free it and allocate a new buffer
		*/

		if (outputSize <= ncSpanGetSize(encCtx->buffer.output))
		{
			_ncUtilZeroSpan(encCtx->buffer.output);

			goto AssignInputAndExit;
		}
		else
		{
			_ncUtilFreeSpan(encCtx->buffer.output);
		}
	}

	/* Alloc output buffer within the struct */
	encCtx->buffer.output = _ncUtilAllocSpan((uint32_t)outputSize, sizeof(uint8_t));

	if (!ncSpanIsValid(encCtx->buffer.output))
	{
		return E_OUT_OF_MEMORY;
	}

AssignInputAndExit:

	/* Confirm output was allocated */
	DEBUG_ASSERT(ncSpanIsValid(encCtx->buffer.output));

	/* Assign the input data span to point to the assigned input data */
	ncSpanInitC(&encCtx->buffer.input, inputData, inputSize);

	return NC_SUCCESS;
}

NC_EXPORT NCResult NC_CC NCUtilCipherGetFlags(const NCUtilCipherContext* ctx)
{
	CHECK_NULL_ARG(ctx, 0);

	return (NCResult)(ctx->_flags);
}

NC_EXPORT NCResult NC_CC NCUtilCipherGetOutputSize(const NCUtilCipherContext* encCtx)
{
	CHECK_NULL_ARG(encCtx, 0);

	if (!ncSpanIsValidC(encCtx->buffer.actualOutput))
	{
		return E_CIPHER_NO_OUTPUT;
	}

	return (NCResult)(ncSpanGetSizeC(encCtx->buffer.actualOutput));
}

NC_EXPORT NCResult NC_CC NCUtilCipherReadOutput(
	const NCUtilCipherContext* encCtx,
	uint8_t* output,
	uint32_t outputSize
)
{
	CHECK_NULL_ARG(encCtx, 0);
	CHECK_NULL_ARG(output, 1);

	if (!ncSpanIsValidC(encCtx->buffer.actualOutput))
	{
		return E_CIPHER_NO_OUTPUT;
	}

	/* Buffer must be as large as the output data  */
	CHECK_ARG_RANGE(outputSize, ncSpanGetSizeC(encCtx->buffer.actualOutput), UINT32_MAX, 2);

	ncSpanReadC(
		encCtx->buffer.actualOutput,
		output,
		outputSize
	);

	return (NCResult)(ncSpanGetSizeC(encCtx->buffer.actualOutput));
}

NC_EXPORT NCResult NC_CC NCUtilCipherSetProperty(
	NCUtilCipherContext* ctx,
	uint32_t property,
	uint8_t* value,
	uint32_t valueLen
)
{	
	CHECK_NULL_ARG(ctx, 0)

	/* All other arguments are verified */
	return NCEncryptionSetPropertyEx(
		&ctx->encArgs, 
		property, 
		value, 
		valueLen
	);
}

NC_EXPORT NCResult NC_CC NCUtilCipherUpdate(
	NCUtilCipherContext* encCtx,
	const NCContext* libContext,
	const NCSecretKey* sk,
	const NCPublicKey* pk
)
{
	CHECK_NULL_ARG(encCtx, 0);
	CHECK_NULL_ARG(libContext, 1);
	CHECK_NULL_ARG(sk, 2);
	CHECK_NULL_ARG(pk, 3);

	/* Make sure input & output buffers have been assigned/allocated */
	if (!ncSpanIsValid(encCtx->buffer.output))
	{
		return E_INVALID_CONTEXT;
	}
	if (!ncSpanIsValidC(encCtx->buffer.input))
	{
		return E_INVALID_CONTEXT;
	}

	/* Reset output data pointer incase it has been moved */
	_cipherPublishOutput(encCtx, 0, 0);

	switch (encCtx->encArgs.version)
	{
	case NC_ENC_VERSION_NIP44:

		if ((encCtx->_flags & NC_UTIL_CIPHER_MODE) == NC_UTIL_CIPHER_MODE_DECRYPT)
		{
			return _nip44DecryptCompleteCore(libContext, sk, pk, encCtx);
		}
		else
		{
			/* Ensure the user manually specified a nonce buffer for encryption mode */
			if (!encCtx->encArgs.nonceData)
			{
				return E_CIPHER_BAD_NONCE;
			}

			return _nip44EncryptCompleteCore(libContext, sk, pk, encCtx);
		}

	default:
		return E_VERSION_NOT_SUPPORTED;
	}
}

NC_EXPORT NCResult NC_CC NCUtilCipherGetIvSize(const NCUtilCipherContext* encCtx)
{
	uint32_t ivSize;

	CHECK_NULL_ARG(encCtx, 0);

	ivSize = NCEncryptionGetIvSize(encCtx->encArgs.version);

	return ivSize == 0
		? E_VERSION_NOT_SUPPORTED
		: (NCResult)ivSize;
}