1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
/*
* Copyright (c) 2024 Vaughn Nugent
*
* Package: noscrypt
* File: noscryptutil.h
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with noscrypt. If not, see http://www.gnu.org/licenses/.
*/
#include <stdlib.h>
#include <math.h>
#include "nc-util.h"
#include "nc-crypto.h"
#include <noscryptutil.h>
/*
* Validation macros
*/
#ifdef NC_EXTREME_COMPAT
#error "Utilities library must be disabled when using extreme compat mode"
#endif /* NC_EXTREME_COMPAT */
#define _nc_mem_free(x) if(x != NULL) { free(x); x = NULL; }
#define _nc_mem_alloc(elements, size) calloc(elements, size);
#define ZERO_FILL ncCryptoSecureZero
#ifndef NC_INPUT_VALIDATION_OFF
#define CHECK_INVALID_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_INVALID_ARG, argPos);
#define CHECK_NULL_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_NULL_PTR, argPos);
#define CHECK_ARG_RANGE(x, min, max, argPos) if(x < min || x > max) return NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, argPos);
#define CHECK_ARG_IS(exp, argPos) if(!(exp)) return NCResultWithArgPosition(E_INVALID_ARG, argPos);
#else
/* empty macros */
#define CHECK_INVALID_ARG(x)
#define CHECK_NULL_ARG(x, argPos)
#define CHECK_ARG_RANGE(x, min, max, argPos)
#define CHECK_ARG_IS(is, expected, argPos)
#endif /* !NC_DISABLE_INPUT_VALIDATION */
/* performs a log2 on integer types */
#define _math_int_log2(x) (int32_t)log2((double)x)
#define MIN_PADDING_SIZE 0x20u
#define NIP44_VERSION_SIZE 0x01u
#define NIP44_PT_LEN_SIZE sizeof(uint16_t)
#define NC_ENC_FLAG_MODE_MASK 0x01ui32
/* Currently were on nip44 version 2 */
const static uint8_t Nip44VersionValue[1] = { 0x02u };
struct nc_util_enc_struct {
uint32_t _flags;
cspan_t cipherInput;
/*
The data this span points to is allocated during initialization
*/
span_t cipherOutput;
NCEncryptionArgs encArgs;
};
static _nc_fn_inline span_t _ncUtilAllocSpan(uint32_t count, size_t size)
{
span_t span;
#if SIZE_MAX < UINT32_MAX
if (count > SIZE_MAX)
{
return span;
}
#endif
span.data = _nc_mem_alloc((size_t)count, size);
span.size = (uint32_t)count;
return span;
}
static _nc_fn_inline void _ncUtilFreeSpan(span_t span)
{
_nc_mem_free(span.data);
}
static _nc_fn_inline uint32_t _calcNip44PtPadding(uint32_t plaintextSize)
{
uint32_t chunk, nextPower, factor;
/*
* Taken from https://github.com/nostr-protocol/nips/blob/master/44.md
*
* I believe the idea is to add consisten padding for some better
* disgusing of the plainText data.
*/
if (plaintextSize <= MIN_PADDING_SIZE)
{
return MIN_PADDING_SIZE;
}
/* Safe to subtract because pt > 0 */
nextPower = _math_int_log2(plaintextSize - 1);
nextPower += 1u;
nextPower = 1 << nextPower;
if (nextPower <= 256u)
{
chunk = 32u;
}
else
{
chunk = nextPower / 8u;
}
factor = plaintextSize - 1;
factor /= chunk;
factor += 1;
return chunk * factor;
}
static _nc_fn_inline uint32_t _calcNip44TotalOutSize(uint32_t inputSize)
{
uint32_t bufferSize;
/*
* Buffer size for nip44 is calculated as follows:
* 1 byte for the version
* 32 bytes for the nonce
* 2 bytes for the length of the plainText
* ... padding size
* 32 bytes for the MAC
*/
bufferSize = NIP44_VERSION_SIZE;
bufferSize += NC_ENCRYPTION_NONCE_SIZE;
bufferSize += NIP44_PT_LEN_SIZE;
bufferSize += _calcNip44PtPadding(inputSize);
bufferSize += NC_ENCRYPTION_MAC_SIZE;
return bufferSize;
}
static _nc_fn_inline span_t _nip44GetMacData(span_t payload)
{
DEBUG_ASSERT(payload.size > NIP44_VERSION_SIZE + NC_ENCRYPTION_MAC_SIZE);
/*
* The nip44 mac is computed over the nonce+encrypted ciphertext
*
* the ciphertext is the entire message buffer, so it includes
* version, nonce, data, padding, and mac space available.
*
* This function will return a span that points to the nonce+data
* segment of the buffer for mac computation.
*
* The nonce sits directly after the version byte, ct is after,
* and the remaining 32 bytes are for the mac. So that means
* macData = ct.size - version.size + mac.size
*/
return ncSpanSlice(
payload,
NIP44_VERSION_SIZE,
payload.size - (NIP44_VERSION_SIZE + NC_ENCRYPTION_MAC_SIZE)
);
}
static _nc_fn_inline span_t _nip44GetMacOutput(span_t payload)
{
DEBUG_ASSERT(payload.size > NC_ENCRYPTION_MAC_SIZE);
/*
* Mac is the final 32 bytes of the ciphertext buffer
*/
return ncSpanSlice(
payload,
payload.size - NC_ENCRYPTION_MAC_SIZE,
NC_ENCRYPTION_MAC_SIZE
);
}
static NCResult _nip44EncryptCompleteCore(
const NCContext* libContext,
const NCSecretKey* sk,
const NCPublicKey* pk,
NCEncryptionArgs encArgs,
cspan_t plainText,
span_t payload
)
{
NCResult result;
span_t macData, macOutput;
uint32_t outPos, paddedCtSize;
uint8_t ptSize[2];
uint8_t hmacKeyOut[NC_ENCRYPTION_MAC_SIZE];
outPos = 0;
DEBUG_ASSERT(encArgs.version == NC_ENC_VERSION_NIP44);
/* Padded size is required to know how large the CT buffer is for encryption */
paddedCtSize = _calcNip44PtPadding(plainText.size);
/* Start by appending the version number */
ncSpanAppend(payload, &outPos, Nip44VersionValue, 0x01);
/* next is nonce data */
ncSpanAppend(payload, &outPos, encArgs.nonceData, NC_ENCRYPTION_NONCE_SIZE);
DEBUG_ASSERT(outPos == 1 + NC_ENCRYPTION_NONCE_SIZE);
/*
* Assign the hmac key from the stack buffer. Since the args structure
* is copied, it won't leak the address to the stack buffer.
*
* Should always return success for nip44 because all properties are valid
* addresses.
*/
result = NCSetEncryptionPropertyEx(
&encArgs,
NC_ENC_SET_NIP44_MAC_KEY,
hmacKeyOut,
sizeof(hmacKeyOut)
);
DEBUG_ASSERT(result == NC_SUCCESS);
/*
* So this is the tricky part. The encryption operation appens directly
* on the ciphertext segment
*
* All current implementations allow overlapping input and output buffers
* so we can assign the pt segment on the encryption args
*/
/*
* Since the message size and padding bytes will get encrypted,
* the buffer should currently point to the start of the encryption segment
*
* The size of the data to encrypt is the padded size plus the size of the
* plainText size field.
*/
result = NCSetEncryptionData(
&encArgs,
(payload.data + outPos),
(payload.data + outPos),
paddedCtSize + NIP44_PT_LEN_SIZE /* Plaintext + pt size must be encrypted */
);
DEBUG_ASSERT(result == NC_SUCCESS);
/* big endian plaintext size */
ptSize[0] = (uint8_t)(plainText.size >> 8);
ptSize[1] = (uint8_t)(plainText.size & 0xFF);
/*
* Written position must point to the end of the padded ciphertext
* area which the plaintext is written to.
*
* The plaintext data will be encrypted in place. The encrypted
* data is the entired padded region containing the leading byte count
* the plaintext data, followed by zero padding.
*/
ncSpanWrite(payload, outPos, ptSize, NIP44_PT_LEN_SIZE);
ncSpanWrite(
payload,
outPos + NIP44_PT_LEN_SIZE, /* write pt directly after length */
plainText.data,
plainText.size
);
/* Move position pointer directly after final padding bytes */
outPos += encArgs.dataSize;
result = NCEncrypt(libContext, sk, pk, &encArgs);
if (result != NC_SUCCESS)
{
return result;
}
/*
MAC is computed over the nonce+encrypted data
this helper captures that data segment into a span
*/
macData = _nip44GetMacData(payload);
macOutput = _nip44GetMacOutput(payload);
result = NCComputeMac(
libContext,
hmacKeyOut,
macData.data,
macData.size,
macOutput.data
);
if (result != NC_SUCCESS)
{
return result;
}
outPos += NC_ENCRYPTION_MAC_SIZE;
DEBUG_ASSERT2(outPos == payload.size, "Buffer under/overflow detected");
/* zero hmac key before returning */
ZERO_FILL(hmacKeyOut, sizeof(hmacKeyOut));
/* Notify the caller how many bytes were written */
return NC_SUCCESS;
}
NC_EXPORT NCResult NC_CC NCUtilGetEncryptionPaddedSize(uint32_t encVersion, uint32_t plaintextSize)
{
switch (encVersion)
{
default:
return E_VERSION_NOT_SUPPORTED;
case NC_ENC_VERSION_NIP04:
return plaintextSize;
case NC_ENC_VERSION_NIP44:
return (NCResult)(_calcNip44PtPadding(plaintextSize));
}
}
NC_EXPORT NCResult NC_CC NCUtilGetEncryptionBufferSize(uint32_t encVersion, uint32_t plaintextSize)
{
switch (encVersion)
{
default:
return E_VERSION_NOT_SUPPORTED;
/*
* NIP-04 simply uses AES to 1:1 encrypt the plainText
* to ciphertext.
*/
case NC_ENC_VERSION_NIP04:
return plaintextSize;
case NC_ENC_VERSION_NIP44:
return (NCResult)(_calcNip44TotalOutSize(plaintextSize));
}
}
NC_EXPORT NCUtilCipherContext* NC_CC NCUtilCipherAlloc(uint32_t encVersion, uint32_t flags)
{
NCUtilCipherContext* encCtx;
/*
* Alloc context on heap
*/
encCtx = (NCUtilCipherContext*)_nc_mem_alloc(1, sizeof(NCUtilCipherContext));
if (encCtx != NULL)
{
encCtx->encArgs.version = encVersion;
encCtx->_flags = flags;
}
return encCtx;
}
NC_EXPORT void NC_CC NCUtilCipherFree(NCUtilCipherContext* encCtx)
{
if (!encCtx)
{
return;
}
/*
* If zero on free flag is set, we can zero all output memory
* before returning the buffer back to the heap
*/
if ((encCtx->_flags & NC_UTIL_CIPHER_ZERO_ON_FREE) > 0 && encCtx->cipherOutput.data)
{
ZERO_FILL(encCtx->cipherOutput.data, encCtx->cipherOutput.size);
}
/* Free output buffers */
_ncUtilFreeSpan(encCtx->cipherOutput);
/* context can be released */
_nc_mem_free(encCtx);
}
NC_EXPORT NCResult NC_CC NCUtilCipherInit(
NCUtilCipherContext* encCtx,
const uint8_t* inputData,
uint32_t inputSize
)
{
NCResult outputSize;
CHECK_NULL_ARG(encCtx, 0);
CHECK_NULL_ARG(inputData, 1);
/*
* The output state must not have alraedy been allocated
*/
CHECK_ARG_IS(encCtx->cipherOutput.data == NULL, 0);
/*
* Calculate the correct output size to store the encryption
* data for the given cipher version
*/
outputSize = NCUtilGetEncryptionBufferSize(encCtx->encArgs.version, inputSize);
if (outputSize <= 0)
{
return outputSize;
}
/*Alloc output buffer within the struct */
encCtx->cipherOutput = _ncUtilAllocSpan((uint32_t)outputSize, sizeof(uint8_t));
if (!encCtx->cipherOutput.data)
{
return E_OUT_OF_MEMORY;
}
ncSpanInitC(&encCtx->cipherInput, inputData, inputSize);
return NC_SUCCESS;
}
NC_EXPORT NCResult NC_CC NCUtilCipherGetOutputSize(const NCUtilCipherContext* encCtx)
{
CHECK_NULL_ARG(encCtx, 0);
return (NCResult)(encCtx->cipherOutput.size);
}
NC_EXPORT NCResult NC_CC NCUtilCipherReadOutput(
const NCUtilCipherContext* encCtx,
uint8_t* output,
uint32_t outputSize
)
{
CHECK_NULL_ARG(encCtx, 0)
CHECK_NULL_ARG(output, 1)
if (outputSize < encCtx->cipherOutput.size)
{
return E_OPERATION_FAILED;
}
MEMMOV(
output,
encCtx->cipherOutput.data,
encCtx->cipherOutput.size
);
return (NCResult)encCtx->cipherOutput.size;
}
NC_EXPORT NCResult NCUtilCipherSetProperty(
NCUtilCipherContext* ctx,
uint32_t property,
uint8_t* value,
uint32_t valueLen
)
{
CHECK_NULL_ARG(ctx, 0)
/* All other arguments are verified */
return NCSetEncryptionPropertyEx(
&ctx->encArgs,
property,
value,
valueLen
);
}
NC_EXPORT NCResult NC_CC NCUtilCipherUpdate(
const NCUtilCipherContext* encCtx,
const NCContext* libContext,
const NCSecretKey* sk,
const NCPublicKey* pk
)
{
uint32_t mode;
CHECK_NULL_ARG(encCtx, 0);
CHECK_NULL_ARG(libContext, 1);
CHECK_NULL_ARG(sk, 2);
CHECK_NULL_ARG(pk, 3);
mode = encCtx->_flags & NC_ENC_FLAG_MODE_MASK;
switch (encCtx->encArgs.version)
{
case NC_ENC_VERSION_NIP44:
if (mode == NC_UTIL_CIPHER_MODE_ENCRYPT)
{
return _nip44EncryptCompleteCore(
libContext,
sk,
pk,
encCtx->encArgs,
encCtx->cipherInput,
encCtx->cipherOutput
);
}
else
{
return E_VERSION_NOT_SUPPORTED;
}
default:
return E_VERSION_NOT_SUPPORTED;
}
}
|