/* * Copyright (c) 2024 Vaughn Nugent * * Package: noscrypt * File: test.c * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with noscrypt. If not, see http://www.gnu.org/licenses/. */ #include #include #include #include #include #include #include #ifdef _NC_IS_WINDOWS #define IS_WINDOWS #endif #ifdef IS_WINDOWS #define WIN32_LEAN_AND_MEAN #include #include #endif #ifdef IS_WINDOWS /*Asserts that an internal test condition is true, otherwise aborts the test process*/ #define TASSERT(x) if(!(x)) { printf("ERROR! Internal test assumption failed: %s.\n Aborting tests...\n", #x); ExitProcess(1); } #else /*Asserts that an internal test condition is true, otherwise aborts the test process*/ #define TASSERT(x) if(!(x)) { printf("Internal assumption failed: %s\n", #x); exit(1); } #endif /*Prints a string literal to the console*/ #define PRINTL(x) puts(x); puts("\n"); #define ENSURE(x) if(!(x)) { puts("Assumption failed!\n"); return 1; } #define TEST(x, expected) printf("\tTesting %s\n", #x); if(((long)x) != ((long)expected)) \ { printf("FAILED: Expected %ld but got %ld @ callsite %s. Line: %d \n", ((long)expected), ((long)x), #x, __LINE__); return 1; } #ifdef IS_WINDOWS #define ZERO_FILL(x, size) SecureZeroMemory(x, size) #else #define ZERO_FILL(x, size) memset(x, 0, size) #endif #ifdef IS_WINDOWS #define memmove(dst, src, size) memmove_s(dst, size, src, size) #else #include #endif #include "hex.h" /*Pre-computed constants for argument errors */ #define ARG_ERROR_POS_0 E_NULL_PTR #define ARG_ERROR_POS_1 NCResultWithArgPosition(E_NULL_PTR, 0x01) #define ARG_ERROR_POS_2 NCResultWithArgPosition(E_NULL_PTR, 0x02) #define ARG_ERROR_POS_3 NCResultWithArgPosition(E_NULL_PTR, 0x03) #define ARG_ERROR_POS_4 NCResultWithArgPosition(E_NULL_PTR, 0x04) #define ARG_ERROR_POS_5 NCResultWithArgPosition(E_NULL_PTR, 0x05) #define ARG_ERROR_POS_6 NCResultWithArgPosition(E_NULL_PTR, 0x06) #define ARG_RANGE_ERROR_POS_0 E_ARGUMENT_OUT_OF_RANGE #define ARG_RANGE_ERROR_POS_1 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x01) #define ARG_RANGE_ERROR_POS_2 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x02) #define ARG_RANGE_ERROR_POS_3 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x03) #define ARG_RANGE_ERROR_POS_4 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x04) #define ARG_RANGE_ERROR_POS_5 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x05) #define ARG_RANGE_ERROR_POS_6 NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, 0x06) #define ARG_INVALID_ERROR_POS_0 E_INVALID_ARG #define ARG_INVALID_ERROR_POS_1 NCResultWithArgPosition(E_INVALID_ARG, 0x01) #define ARG_INVALID_ERROR_POS_2 NCResultWithArgPosition(E_INVALID_ARG, 0x02) #define ARG_INVALID_ERROR_POS_3 NCResultWithArgPosition(E_INVALID_ARG, 0x03) #define ARG_INVALID_ERROR_POS_4 NCResultWithArgPosition(E_INVALID_ARG, 0x04) #define ARG_INVALID_ERROR_POS_5 NCResultWithArgPosition(E_INVALID_ARG, 0x05) #define ARG_INVALID_ERROR_POS_6 NCResultWithArgPosition(E_INVALID_ARG, 0x06) static int RunTests(void); static void FillRandomData(void* pbBuffer, size_t length); static int TestEcdsa(NCContext* context, NCSecretKey* secKey, NCPublicKey* pubKey); static int InitKepair(NCContext* context, NCSecretKey* secKey, NCPublicKey* pubKey); static int TestKnownKeys(NCContext* context); static int TestCorrectEncryption(NCContext* context); #ifndef NC_INPUT_VALIDATION_OFF static int TestPublicApiArgumentValidation(void); #endif static const uint8_t zero32[32] = { 0 }; int main(void) { int result; result = RunTests(); (void)PrintHexBytes; /*avoid unused. I use occasionally for debugging*/ FreeHexBytes(); return result; } static int RunTests(void) { NCContext ctx; uint8_t ctxRandom[32]; NCSecretKey secKey; NCPublicKey pubKey; PRINTL("Begining basic noscrypt tests") FillRandomData(ctxRandom, 32); /* * Context struct size should aways match the size of the * struct returned by NCGetContextStructSize */ TEST(NCGetContextStructSize(), sizeof(NCContext)) TEST(NCInitContext(&ctx, ctxRandom), NC_SUCCESS) if (InitKepair(&ctx, &secKey, &pubKey) != 0) { return 1; } if (TestEcdsa(&ctx, &secKey, &pubKey) != 0) { return 1; } if (TestKnownKeys(&ctx) != 0) { return 1; } #ifndef NC_INPUT_VALIDATION_OFF if (TestPublicApiArgumentValidation() != 0) { return 1; } #endif if (TestCorrectEncryption(&ctx) != 0) { return 1; } TEST(NCDestroyContext(&ctx), NC_SUCCESS) PRINTL("\nSUCCESS All tests passed") return 0; } static const char* message = "Test message to sign"; static int InitKepair(NCContext* context, NCSecretKey* secKey, NCPublicKey* pubKey) { PRINTL("TEST: Keypair") /* Get random private key */ FillRandomData(secKey, sizeof(NCSecretKey)); /* Ensure not empty */ ENSURE(memcmp(zero32, secKey, 32) != 0); /* Ensure the key is valid, result should be 1 on success */ TEST(NCValidateSecretKey(context, secKey), 1); /* Generate a public key from the secret key */ TEST(NCGetPublicKey(context, secKey, pubKey), NC_SUCCESS); PRINTL("\nPASSED: Keypair tests completed") return 0; } static int TestEcdsa(NCContext* context, NCSecretKey* secKey, NCPublicKey* pubKey) { uint8_t sigEntropy[32]; uint8_t invalidSig[64]; HexBytes* digestHex; PRINTL("TEST: Ecdsa") /*Init a new secret key with random data */ FillRandomData(invalidSig, sizeof(invalidSig)); FillRandomData(sigEntropy, sizeof(sigEntropy)); digestHex = FromHexString("58884db8f9b2d5583a54b44daeccf029af4dd2874aa5e3dc0e55febebab55d18", 32); /* Sign and verify sig64 */ { uint8_t sig[64]; TEST(NCSignDigest(context, secKey, sigEntropy, digestHex->data, sig), NC_SUCCESS); TEST(NCVerifyDigest(context, pubKey, digestHex->data, sig), NC_SUCCESS); } /* Sign and verify raw data */ { uint8_t sig[64]; TEST(NCSignData(context, secKey, sigEntropy, (uint8_t*)message, strlen(message), sig), NC_SUCCESS); TEST(NCVerifyData(context, pubKey, (uint8_t*)message, strlen(message), sig), NC_SUCCESS); } /* ensure the signature is the same for signing data and sig64 */ { uint8_t sig1[64]; uint8_t sig2[64]; /* Ensure operations succeed but dont print them as test cases */ ENSURE(NCSignData(context, secKey, sigEntropy, (uint8_t*)message, strlen(message), sig1) == NC_SUCCESS); ENSURE(NCSignDigest(context, secKey, sigEntropy, digestHex->data, sig2) == NC_SUCCESS); /* Perform test */ TEST(memcmp(sig1, sig2, 64), 0); } /* Try signing data then veriyfing the sig64 */ { uint8_t sig[64]; ENSURE(NCSignData(context, secKey, sigEntropy, (uint8_t*)message, strlen(message), sig) == NC_SUCCESS); TEST(NCVerifyDigest(context, pubKey, digestHex->data, sig), NC_SUCCESS); /* Now invert test, zero signature to ensure its overwritten */ ZERO_FILL(sig, sizeof(sig)); ENSURE(NCSignDigest(context, secKey, sigEntropy, digestHex->data, sig) == NC_SUCCESS); TEST(NCVerifyData(context, pubKey, (uint8_t*)message, strlen(message), sig), NC_SUCCESS); } /* test verification of invalid signature */ { TEST(NCVerifyDigest(context, pubKey, digestHex->data, invalidSig), E_INVALID_ARG); } PRINTL("\nPASSED: Ecdsa tests completed") return 0; } #ifndef NC_INPUT_VALIDATION_OFF static int TestPublicApiArgumentValidation(void) { NCContext ctx; uint8_t ctxRandom[32]; uint8_t sig64[64]; NCSecretKey secKey; NCPublicKey pubKey; uint8_t hmacKeyOut[NC_HMAC_KEY_SIZE]; uint8_t nonce[NC_ENCRYPTION_NONCE_SIZE]; NCEncryptionArgs cryptoData; cryptoData.dataSize = sizeof(zero32); cryptoData.inputData = zero32; cryptoData.outputData = sig64; /*just an arbitrary writeable buffer*/ cryptoData.nonce32 = nonce; cryptoData.hmacKeyOut32 = hmacKeyOut; PRINTL("TEST: Public API argument validation tests") FillRandomData(ctxRandom, 32); FillRandomData(nonce, sizeof(nonce)); /*Test null context*/ TEST(NCInitContext(NULL, ctxRandom), ARG_ERROR_POS_0) TEST(NCInitContext(&ctx, NULL), ARG_ERROR_POS_1) /*Test null context*/ TEST(NCDestroyContext(NULL), ARG_ERROR_POS_0) /*reinit*/ TEST(NCReInitContext(NULL, ctxRandom), ARG_ERROR_POS_0) TEST(NCReInitContext(&ctx, NULL), ARG_ERROR_POS_1) /*Test null secret key*/ TEST(NCGetPublicKey(&ctx, NULL, &pubKey), ARG_ERROR_POS_1) TEST(NCGetPublicKey(&ctx, &secKey, NULL), ARG_ERROR_POS_2) /*Test null secret key*/ TEST(NCValidateSecretKey(NULL, &secKey), ARG_ERROR_POS_0) TEST(NCValidateSecretKey(&ctx, NULL), ARG_ERROR_POS_1) /*Verify sig64 args test*/ TEST(NCVerifyDigest(NULL, &pubKey, zero32, sig64), ARG_ERROR_POS_0) TEST(NCVerifyDigest(&ctx, NULL, zero32, sig64), ARG_ERROR_POS_1) TEST(NCVerifyDigest(&ctx, &pubKey, NULL, sig64), ARG_ERROR_POS_2) TEST(NCVerifyDigest(&ctx, &pubKey, zero32, NULL), ARG_ERROR_POS_3) /*Test verify data args*/ TEST(NCVerifyData(NULL, &pubKey, zero32, 32, sig64), ARG_ERROR_POS_0) TEST(NCVerifyData(&ctx, NULL, zero32, 32, sig64), ARG_ERROR_POS_1) TEST(NCVerifyData(&ctx, &pubKey, NULL, 32, sig64), ARG_ERROR_POS_2) TEST(NCVerifyData(&ctx, &pubKey, zero32, 0, sig64), ARG_RANGE_ERROR_POS_3) TEST(NCVerifyData(&ctx, &pubKey, zero32, 32, NULL), ARG_ERROR_POS_4) /*Test null sign data args*/ TEST(NCSignData(NULL, &secKey, zero32, zero32, 32, sig64), ARG_ERROR_POS_0) TEST(NCSignData(&ctx, NULL, zero32, zero32, 32, sig64), ARG_ERROR_POS_1) TEST(NCSignData(&ctx, &secKey, NULL, zero32, 32, sig64), ARG_ERROR_POS_2) TEST(NCSignData(&ctx, &secKey, zero32, NULL, 32, sig64), ARG_ERROR_POS_3) TEST(NCSignData(&ctx, &secKey, zero32, zero32, 0, sig64), ARG_RANGE_ERROR_POS_4) TEST(NCSignData(&ctx, &secKey, zero32, zero32, 32, NULL), ARG_ERROR_POS_5) /*Test null sign digest args*/ TEST(NCSignDigest(NULL, &secKey, zero32, zero32, sig64), ARG_ERROR_POS_0) TEST(NCSignDigest(&ctx, NULL, zero32, zero32, sig64), ARG_ERROR_POS_1) TEST(NCSignDigest(&ctx, &secKey, NULL, zero32, sig64), ARG_ERROR_POS_2) TEST(NCSignDigest(&ctx, &secKey, zero32, NULL, sig64), ARG_ERROR_POS_3) TEST(NCSignDigest(&ctx, &secKey, zero32, zero32, NULL), ARG_ERROR_POS_4) /*Test null encrypt args*/ TEST(NCEncrypt(NULL, &secKey, &pubKey, &cryptoData), ARG_ERROR_POS_0) TEST(NCEncrypt(&ctx, NULL, &pubKey, &cryptoData), ARG_ERROR_POS_1) TEST(NCEncrypt(&ctx, &secKey, NULL, &cryptoData), ARG_ERROR_POS_2) TEST(NCEncrypt(&ctx, &secKey, &pubKey, NULL), ARG_ERROR_POS_3) /*Test invalid data size*/ cryptoData.dataSize = 0; TEST(NCEncrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_RANGE_ERROR_POS_3) /*Test null input data */ cryptoData.dataSize = 32; cryptoData.inputData = NULL; TEST(NCEncrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_INVALID_ERROR_POS_3) /*Test null output data */ cryptoData.inputData = zero32; cryptoData.outputData = NULL; TEST(NCEncrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_INVALID_ERROR_POS_3) /* Decrypt */ cryptoData.dataSize = 32; cryptoData.inputData = zero32; cryptoData.outputData = sig64; TEST(NCDecrypt(NULL, &secKey, &pubKey, &cryptoData), ARG_ERROR_POS_0) TEST(NCDecrypt(&ctx, NULL, &pubKey, &cryptoData), ARG_ERROR_POS_1) TEST(NCDecrypt(&ctx, &secKey, NULL, &cryptoData), ARG_ERROR_POS_2) TEST(NCDecrypt(&ctx, &secKey, &pubKey, NULL), ARG_ERROR_POS_3) /* Test invalid data size */ cryptoData.dataSize = 0; TEST(NCDecrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_RANGE_ERROR_POS_3) /* Test null input data */ cryptoData.dataSize = 32; cryptoData.inputData = NULL; TEST(NCDecrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_INVALID_ERROR_POS_3) /*Test null output data */ cryptoData.inputData = zero32; cryptoData.outputData = NULL; TEST(NCDecrypt(&ctx, &secKey, &pubKey, &cryptoData), ARG_INVALID_ERROR_POS_3) { uint8_t hmacDataOut[NC_ENCRYPTION_MAC_SIZE]; TEST(NCComputeMac(NULL, hmacKeyOut, zero32, 32, hmacDataOut), ARG_ERROR_POS_0) TEST(NCComputeMac(&ctx, NULL, zero32, 32, hmacDataOut), ARG_ERROR_POS_1) TEST(NCComputeMac(&ctx, hmacKeyOut, NULL, 32, hmacDataOut), ARG_ERROR_POS_2) TEST(NCComputeMac(&ctx, hmacKeyOut, zero32, 0, hmacDataOut), ARG_RANGE_ERROR_POS_3) TEST(NCComputeMac(&ctx, hmacKeyOut, zero32, 32, NULL), ARG_ERROR_POS_4) } { NCMacVerifyArgs macArgs; macArgs.payload = zero32; macArgs.payloadSize = 32; macArgs.mac32 = zero32; macArgs.nonce32 = zero32; TEST(NCVerifyMac(NULL, &secKey, &pubKey, &macArgs), ARG_ERROR_POS_0) TEST(NCVerifyMac(&ctx, NULL, &pubKey, &macArgs), ARG_ERROR_POS_1) TEST(NCVerifyMac(&ctx, &secKey, NULL, &macArgs), ARG_ERROR_POS_2) TEST(NCVerifyMac(&ctx, &secKey, &pubKey, NULL), ARG_ERROR_POS_3) macArgs.payload = NULL; TEST(NCVerifyMac(&ctx, &secKey, &pubKey, &macArgs), ARG_INVALID_ERROR_POS_3) macArgs.payload = zero32; macArgs.payloadSize = 0; TEST(NCVerifyMac(&ctx, &secKey, &pubKey, &macArgs), ARG_RANGE_ERROR_POS_3) } PRINTL("\nPASSED: Public API argument validation tests completed") return 0; } #endif static int TestKnownKeys(NCContext* context) { NCPublicKey pubKey; HexBytes* secKey1, * pubKey1, * secKey2, * pubKey2; PRINTL("TEST: Known keys") secKey1 = FromHexString("98c642360e7163a66cee5d9a842b252345b6f3f3e21bd3b7635d5e6c20c7ea36", sizeof(NCSecretKey)); pubKey1 = FromHexString("0db15182c4ad3418b4fbab75304be7ade9cfa430a21c1c5320c9298f54ea5406", sizeof(NCPublicKey)); secKey2 = FromHexString("3032cb8da355f9e72c9a94bbabae80ca99d3a38de1aed094b432a9fe3432e1f2", sizeof(NCSecretKey)); pubKey2 = FromHexString("421181660af5d39eb95e48a0a66c41ae393ba94ffeca94703ef81afbed724e5a", sizeof(NCPublicKey)); /*Test known keys*/ TEST(NCValidateSecretKey(context, NCToSecKey(secKey1->data)), 1); /* Recover a public key from secret key 1 */ TEST(NCGetPublicKey(context, NCToSecKey(secKey1->data), &pubKey), NC_SUCCESS); /* Ensure the public key matches the known public key value */ TEST(memcmp(pubKey1->data, &pubKey, sizeof(pubKey)), 0); /* Repeat with second key */ TEST(NCValidateSecretKey(context, (NCSecretKey*)secKey2->data), 1); TEST(NCGetPublicKey(context, (NCSecretKey*)secKey2->data, &pubKey), NC_SUCCESS); TEST(memcmp(pubKey2->data, &pubKey, sizeof(pubKey)), 0); PRINTL("\nPASSED: Known keys tests completed") return 0; } #define TEST_ENC_DATA_SIZE 128 static int TestCorrectEncryption(NCContext* context) { NCSecretKey secKey1; NCPublicKey pubKey1; NCSecretKey secKey2; NCPublicKey pubKey2; uint8_t hmacKeyOut[NC_HMAC_KEY_SIZE]; uint8_t nonce[NC_ENCRYPTION_NONCE_SIZE]; uint8_t mac[NC_ENCRYPTION_MAC_SIZE]; uint8_t plainText[TEST_ENC_DATA_SIZE]; uint8_t cipherText[TEST_ENC_DATA_SIZE]; uint8_t decryptedText[TEST_ENC_DATA_SIZE]; NCEncryptionArgs cryptoData; NCMacVerifyArgs macVerifyArgs; /* setup the crypto data structure */ cryptoData.dataSize = TEST_ENC_DATA_SIZE; cryptoData.inputData = plainText; cryptoData.outputData = cipherText; cryptoData.nonce32 = nonce; cryptoData.hmacKeyOut32 = hmacKeyOut; macVerifyArgs.nonce32 = nonce; macVerifyArgs.mac32 = mac; macVerifyArgs.payload = cipherText; macVerifyArgs.payloadSize = TEST_ENC_DATA_SIZE; PRINTL("TEST: Correct encryption") /* init a sending and receiving key */ FillRandomData(&secKey1, sizeof(NCSecretKey)); FillRandomData(&secKey2, sizeof(NCSecretKey)); FillRandomData(plainText, sizeof(plainText)); /* nonce is shared */ FillRandomData(nonce, sizeof(nonce)); ENSURE(NCValidateSecretKey(context, &secKey1) == 1); ENSURE(NCValidateSecretKey(context, &secKey2) == 1); ENSURE(NCGetPublicKey(context, &secKey1, &pubKey1) == NC_SUCCESS); ENSURE(NCGetPublicKey(context, &secKey2, &pubKey2) == NC_SUCCESS); /* Try to encrypt the data from sec1 to pub2 */ TEST(NCEncrypt(context, &secKey1, &pubKey2, &cryptoData), NC_SUCCESS); /*swap cipher and plain text for decryption */ cryptoData.inputData = cipherText; cryptoData.outputData = decryptedText; /* Try to decrypt the data from sec1 to pub2 */ TEST(NCDecrypt(context, &secKey2, &pubKey1, &cryptoData), NC_SUCCESS); /* Ensure the decrypted text matches the original */ TEST(memcmp(plainText, decryptedText, sizeof(plainText)), 0); /* Compute message mac on ciphertext */ TEST(NCComputeMac(context, hmacKeyOut, cipherText, sizeof(cipherText), mac), NC_SUCCESS); /* Verify the mac */ TEST(NCVerifyMac(context, &secKey1, &pubKey2, &macVerifyArgs), NC_SUCCESS); PRINTL("\nPASSED: Correct encryption tests completed") return 0; } static void FillRandomData(void* pbBuffer, size_t length) { #ifdef IS_WINDOWS HCRYPTPROV hCryptProv; TASSERT(CryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, 0)); TASSERT(CryptGenRandom(hCryptProv, (DWORD)length, pbBuffer)) TASSERT(CryptReleaseContext(hCryptProv, 0)); #else FILE* f = fopen("/dev/urandom", "rb"); TASSERT(f != NULL); TASSERT(fread(pbBuffer, 1, length, f) == length); fclose(f); #endif }