/* * Copyright (c) 2024 Vaughn Nugent * * Package: noscrypt * File: noscrypt.c * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with noscrypt. If not, see http://www.gnu.org/licenses/. */ #include "noscrypt.h" #include "nc-util.h" #include "hkdf.h" #include "nc-crypto.h" #include #include /* * Local macro for secure zero buffer fill */ #define ZERO_FILL(x, size) ncCryptoSecureZero(x, size) /* * Validation macros */ #ifndef NC_INPUT_VALIDATION_OFF #define CHECK_INVALID_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_INVALID_ARG, argPos); #define CHECK_NULL_ARG(x, argPos) if(x == NULL) return NCResultWithArgPosition(E_NULL_PTR, argPos); #define CHECK_ARG_RANGE(x, min, max, argPos) if(x < min || x > max) return NCResultWithArgPosition(E_ARGUMENT_OUT_OF_RANGE, argPos); #else /* empty macros */ #define CHECK_INVALID_ARG(x) #define CHECK_NULL_ARG(x, argPos) #define CHECK_ARG_RANGE(x, min, max, argPos) #endif /* !NC_DISABLE_INPUT_VALIDATION */ #define CHECK_CONTEXT_STATE(ctx, argPos) CHECK_INVALID_ARG(ctx->secpCtx, argPos) /* * Actual, private defintion of the NCContext structure * to allow for future development and ABI backords * compatability. */ struct nc_ctx_struct { void* secpCtx; }; /* * The Nip44 constant salt * https://github.com/nostr-protocol/nips/blob/master/44.md#encryption */ static const uint8_t Nip44ConstantSalt[8] = { 0x6e, 0x69, 0x70, 0x34, 0x34, 0x2d, 0x76, 0x32 }; static struct nc_ctx_struct _ncSharedCtx; struct shared_secret { uint8_t value[NC_SHARED_SEC_SIZE]; }; struct conversation_key { uint8_t value[NC_CONV_KEY_SIZE]; }; struct message_key { uint8_t value[NC_MESSAGE_KEY_SIZE]; }; /* * The following struct layout is exactly the same as * the message key, they may be typecasted to each other. * as long as the size is the same. */ struct nc_expand_keys { uint8_t chacha_key[CHACHA_KEY_SIZE]; uint8_t chacha_nonce[CHACHA_NONCE_SIZE]; uint8_t hmac_key[NC_HMAC_KEY_SIZE]; }; /* Pointer typecast must work between expanded keys * and message key, size must be identical to work */ STATIC_ASSERT(sizeof(struct nc_expand_keys) == sizeof(struct message_key), "Expected struct nc_expand_keys to be the same size as struct message_key") /* * Check that the fallback hkdf extract internal buffer is large enough * for full converstation key buffers */ STATIC_ASSERT(HKDF_IN_BUF_SIZE >= NC_CONV_KEY_SIZE + 8, "HKDF Buffer size is too small for safe HKDF operations") /* * Internal helper functions to do common structure conversions */ static _nc_fn_inline int _convertToXonly( const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_xonly_pubkey* xonly ) { DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure") DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure ") /* Parse the public key into the x-only structure */ return secp256k1_xonly_pubkey_parse(ctx->secpCtx, xonly, compressedPubKey->key); } static int _convertToPubKey(const NCContext* ctx, const NCPublicKey* compressedPubKey, secp256k1_pubkey* pubKey) { int result; uint8_t compressed[sizeof(NCPublicKey) + 1]; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte key structure") DEBUG_ASSERT2(pubKey != NULL, "Expected valid secp256k1 public key structure") /* Set the first byte to 0x02 to indicate a compressed public key */ compressed[0] = BIP340_PUBKEY_HEADER_BYTE; /* Copy the compressed public key data into a new buffer (offset by 1 to store the header byte) */ MEMMOV((compressed + 1), compressedPubKey, sizeof(NCPublicKey)); result = secp256k1_ec_pubkey_parse(ctx->secpCtx, pubKey, compressed, sizeof(compressed)); ZERO_FILL(compressed, sizeof(compressed)); return result; } static _nc_fn_inline int _convertFromXonly( const NCContext* ctx, const secp256k1_xonly_pubkey* xonly, NCPublicKey* compressedPubKey ) { DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(xonly != NULL, "Expected valid X-only secp256k1 public key structure.") DEBUG_ASSERT2(compressedPubKey != NULL, "Expected a valid public 32byte pubkey structure") return secp256k1_xonly_pubkey_serialize(ctx->secpCtx, compressedPubKey->key, xonly); } /* * IMPL NOTES: * This callback function will be invoked by the ecdh function to hash the shared point. * * For nostr, this operation is defined in the new NIP-44 spec here: * https://github.com/nostr-protocol/nips/blob/master/44.md#encryption * * The x coordinate of the shared point is copied directly into the output buffer. No hashing is * performed here. The y coordinate is not used, and for this implementation, there is no data * pointer. */ static int _edhHashFuncInternal( unsigned char* output, const uint8_t* x32, const uint8_t* y32, void* data ) { ((void)y32); /* unused for nostr */ ((void)data); DEBUG_ASSERT2(output != NULL, "Expected valid output buffer") DEBUG_ASSERT2(x32 != NULL, "Expected a valid public 32byte x-coodinate buffer") /* Copy the x coordinate of the shared point into the output buffer */ MEMMOV(output, x32, 32); return 32; /* Return the number of bytes written to the output buffer */ } static NCResult _computeSharedSecret( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* otherPk, struct shared_secret* sharedPoint ) { int result; secp256k1_pubkey pubKey; DEBUG_ASSERT(ctx != NULL) DEBUG_ASSERT(sk != NULL) DEBUG_ASSERT(otherPk != NULL) DEBUG_ASSERT(sharedPoint != NULL) /* Recover pubkey from compressed public key data */ if (_convertToPubKey(ctx, otherPk, &pubKey) != 1) { return E_INVALID_ARG; } /* * Compute the shared point using the ecdh function. * * The above callback is invoked to "compute" the hash (it * copies the x coord) and it does not use the data pointer * so it is set to NULL. */ result = secp256k1_ecdh( ctx->secpCtx, (uint8_t*)sharedPoint, &pubKey, sk->key, &_edhHashFuncInternal, NULL ); ZERO_FILL(&pubKey, sizeof(pubKey)); /* Result should be 1 on success */ return result == 1 ? NC_SUCCESS : E_OPERATION_FAILED; } static _nc_fn_inline NCResult _computeConversationKey( const NCContext* ctx, const struct shared_secret* sharedSecret, struct conversation_key* ck ) { cspan_t saltSpan, ikmSpan; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(sharedSecret != NULL, "Expected a valid shared-point") DEBUG_ASSERT2(ck != NULL, "Expected a valid conversation key") ncSpanInitC(&saltSpan, Nip44ConstantSalt, sizeof(Nip44ConstantSalt)); ncSpanInitC(&ikmSpan, sharedSecret->value, NC_SHARED_SEC_SIZE); return ncCryptoSha256HkdfExtract(&saltSpan, &ikmSpan, ck->value) == CSTATUS_OK ? NC_SUCCESS : E_OPERATION_FAILED; } /* * Explode the hkdf into the chacha key, chacha nonce, and hmac key. */ static _nc_fn_inline const struct nc_expand_keys* _expandKeysFromHkdf(const struct message_key* hkdf) { return (const struct nc_expand_keys*)hkdf; } static cstatus_t _chachaEncipher(const struct nc_expand_keys* keys, NCEncryptionArgs* args) { DEBUG_ASSERT2(keys != NULL, "Expected valid keys") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") return ncCryptoChacha20( keys->chacha_key, keys->chacha_nonce, args->inputData, /* Input data */ args->outputData, /* Output data */ args->dataSize /* Data size (input and output are assumed to be the same size) */ ); } static _nc_fn_inline cstatus_t _getMessageKey( const struct conversation_key* converstationKey, const cspan_t* nonce, struct message_key* messageKey ) { cspan_t prkSpan; span_t okmSpan; DEBUG_ASSERT2(nonce != NULL, "Expected valid nonce buffer") DEBUG_ASSERT2(converstationKey != NULL, "Expected valid conversation key") DEBUG_ASSERT2(messageKey != NULL, "Expected valid message key buffer") ncSpanInitC(&prkSpan, converstationKey->value, sizeof(struct conversation_key)); /* Conversation key is the input key */ ncSpanInit(&okmSpan, messageKey->value, sizeof(struct message_key)); /* Output produces a message key (write it directly to struct memory) */ /* Nonce is the info */ return ncCryptoSha256HkdfExpand(&prkSpan, nonce, &okmSpan); } static _nc_fn_inline NCResult _encryptNip44Ex( const NCContext* ctx, const struct conversation_key* ck, uint8_t* hmacKey, NCEncryptionArgs* args ) { NCResult result; cspan_t nonceSpan; struct message_key messageKey; const struct nc_expand_keys* expandedKeys; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") DEBUG_ASSERT2(hmacKey != NULL, "Expected valid hmac key buffer") result = NC_SUCCESS; ncSpanInitC(&nonceSpan, args->nonceData, NC_ENCRYPTION_NONCE_SIZE); /* Message key will be derrived on every encryption call */ if (_getMessageKey(ck, &nonceSpan, &messageKey) != CSTATUS_OK) { result = E_OPERATION_FAILED; goto Cleanup; } /* Split apart the message key into it's expanded form so components can be extracted */ expandedKeys = _expandKeysFromHkdf(&messageKey); /* Copy the hmac key into the args */ MEMMOV(hmacKey, expandedKeys->hmac_key, NC_HMAC_KEY_SIZE); /* CHACHA20 (the result will be 0 on success) */ if (_chachaEncipher(expandedKeys, args) != CSTATUS_OK) { result = E_OPERATION_FAILED; } Cleanup: ZERO_FILL(&messageKey, sizeof(messageKey)); return result; } static _nc_fn_inline NCResult _decryptNip44Ex(const NCContext* ctx, const struct conversation_key* ck, NCEncryptionArgs* args) { NCResult result; cspan_t nonceSpan; struct message_key messageKey; const struct nc_expand_keys* cipherKeys; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(ck != NULL, "Expected valid conversation key") DEBUG_ASSERT2(args != NULL, "Expected valid encryption args") result = NC_SUCCESS; ncSpanInitC(&nonceSpan, args->nonceData, NC_ENCRYPTION_NONCE_SIZE); if (_getMessageKey(ck, &nonceSpan, &messageKey) != CSTATUS_OK) { result = E_OPERATION_FAILED; goto Cleanup; } /* Expand the keys from the hkdf so we can use them in the cipher */ cipherKeys = _expandKeysFromHkdf(&messageKey); /* CHACHA20 (the result will be 0 on success) */ if (_chachaEncipher(cipherKeys, args) != CSTATUS_OK) { result = E_OPERATION_FAILED; } Cleanup: ZERO_FILL(&messageKey, sizeof(messageKey)); return result; } static _nc_fn_inline cstatus_t _computeHmac(const uint8_t key[NC_HMAC_KEY_SIZE], const cspan_t* payload, sha256_t hmacOut) { cspan_t keySpan; DEBUG_ASSERT2(key != NULL, "Expected valid hmac key") DEBUG_ASSERT2(payload != NULL, "Expected valid mac verification args") DEBUG_ASSERT2(hmacOut != NULL, "Expected valid hmac output buffer") ncSpanInitC(&keySpan, key, NC_HMAC_KEY_SIZE); return ncCryptoHmacSha256(&keySpan, payload, hmacOut); } static NCResult _verifyMacEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCMacVerifyArgs* args ) { NCResult result; cspan_t payloadSpan, nonceSpan; sha256_t hmacOut; const struct nc_expand_keys* keys; struct message_key messageKey; DEBUG_ASSERT2(ctx != NULL, "Expected valid context") DEBUG_ASSERT2(conversationKey != NULL, "Expected valid conversation key") DEBUG_ASSERT2(args != NULL, "Expected valid mac verification args") ncSpanInitC(&nonceSpan, args->nonce32, NC_ENCRYPTION_NONCE_SIZE); ncSpanInitC(&payloadSpan, args->payload, args->payloadSize); /* * Message key is again required for the hmac verification */ if (_getMessageKey((struct conversation_key*)conversationKey, &nonceSpan, &messageKey) != CSTATUS_OK) { result = E_OPERATION_FAILED; goto Cleanup; } /* Expand keys to get the hmac-key */ keys = _expandKeysFromHkdf(&messageKey); /* * Compute the hmac of the data using the computed hmac key */ if (_computeHmac(keys->hmac_key, &payloadSpan, hmacOut) != CSTATUS_OK) { result = E_OPERATION_FAILED; goto Cleanup; } /* constant time compare the macs */ result = ncCryptoFixedTimeComp(hmacOut, args->mac32, NC_ENCRYPTION_MAC_SIZE) == 0 ? NC_SUCCESS : E_OPERATION_FAILED; Cleanup: ZERO_FILL(&messageKey, sizeof(messageKey)); ZERO_FILL(hmacOut, sizeof(hmacOut)); return result; } /* * EXTERNAL API FUNCTIONS */ NC_EXPORT NCResult NC_CC NCResultWithArgPosition(NCResult err, uint8_t argPosition) { return -(((NCResult)argPosition << NC_ARG_POSITION_OFFSET) | -err); } NC_EXPORT int NC_CC NCParseErrorCode(NCResult result, uint8_t* argPositionOut) { NCResult asPositive; int code; /* convert result to a positive value*/ asPositive = -result; /* Get the error code from the lower 8 bits and the argument position from the upper 8 bits*/ code = -(asPositive & NC_ERROR_CODE_MASK); /* Allow argument position assignment to be null */ if (argPositionOut) { *argPositionOut = (asPositive >> NC_ARG_POSITION_OFFSET) & 0xFF; } return code; } /* ============================= * * Context functions * * ============================= */ NC_EXPORT uint32_t NC_CC NCGetContextStructSize(void) { return sizeof(NCContext); } NC_EXPORT NCContext* NC_CC NCGetSharedContext(void) { /*Return the global address of the shared context structure */ return &_ncSharedCtx; } NC_EXPORT NCResult NC_CC NCInitContext( NCContext* ctx, const uint8_t entropy[NC_CONTEXT_ENTROPY_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(entropy, 1) ZERO_FILL(ctx, sizeof(NCContext)); ctx->secpCtx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); /* * Randomize once on init, users can call reinit to * randomize again as needed. */ return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCReInitContext( NCContext* ctx, const uint8_t entropy[NC_CONTEXT_ENTROPY_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(entropy, 1) CHECK_CONTEXT_STATE(ctx, 0) /* Only randomize again */ return secp256k1_context_randomize(ctx->secpCtx, entropy) ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCDestroyContext(NCContext* ctx) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) /* Destroy secp256k1 context */ secp256k1_context_destroy(ctx->secpCtx); /* Wipe the context */ ZERO_FILL(ctx, sizeof(NCContext)); return NC_SUCCESS; } /* ============================= * * ECDSA functions * * ============================= */ NC_EXPORT NCResult NC_CC NCGetPublicKey( const NCContext* ctx, const NCSecretKey* sk, NCPublicKey* pk ) { int result; secp256k1_keypair keyPair; secp256k1_xonly_pubkey xonly; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1) { return E_INVALID_ARG; } /* Generate the x-only public key, docs say this should always return 1 */ result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair); DEBUG_ASSERT2(result == 1, "Expected x-only kepair to ALWAYS return 1") /* Convert to compressed pubkey */ result = _convertFromXonly(ctx, &xonly, pk); DEBUG_ASSERT2(result == 1, "Expected x-only pubkey serialize to return 1") /* Clean out keypair */ ZERO_FILL(&keyPair, sizeof(keyPair)); ZERO_FILL(&xonly, sizeof(xonly)); return NC_SUCCESS; } NC_EXPORT NCResult NC_CC NCValidateSecretKey(const NCContext* ctx, const NCSecretKey* sk) { CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_CONTEXT_STATE(ctx, 0) /* Validate the secret key */ return secp256k1_ec_seckey_verify(ctx->secpCtx, sk->key) == 1 ? NC_SUCCESS : E_OPERATION_FAILED; } /* Ecdsa Functions */ NC_EXPORT NCResult NC_CC NCSignDigest( const NCContext* ctx, const NCSecretKey* sk, const uint8_t random32[32], const uint8_t digest32[32], uint8_t sig64[64] ) { int result; secp256k1_keypair keyPair; secp256k1_xonly_pubkey xonly; /* Validate arguments */ CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(random32, 2) CHECK_NULL_ARG(digest32, 3) CHECK_NULL_ARG(sig64, 4) /* Fill keypair structure from the callers secret key */ if (secp256k1_keypair_create(ctx->secpCtx, &keyPair, sk->key) != 1) { return E_INVALID_ARG; } /* Sign the digest */ result = secp256k1_schnorrsig_sign32(ctx->secpCtx, sig64, digest32, &keyPair, random32); DEBUG_ASSERT2(result == 1, "Expected schnorr signature to return 1"); /* x-only public key from keypair so the signature can be verified */ result = secp256k1_keypair_xonly_pub(ctx->secpCtx, &xonly, NULL, &keyPair); DEBUG_ASSERT2(result == 1, "Expected x-only public key to ALWAYS return 1"); /* Verify the signature is valid */ result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly); ZERO_FILL(&keyPair, sizeof(keyPair)); ZERO_FILL(&xonly, sizeof(xonly)); return result == 1 ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCSignData( const NCContext* ctx, const NCSecretKey* sk, const uint8_t random32[32], const uint8_t* data, uint32_t dataSize, uint8_t sig64[64] ) { cspan_t dataSpan; sha256_t digest; /* Double check is required because arg position differs */ CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(random32, 2) CHECK_NULL_ARG(data, 3) CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 4) CHECK_NULL_ARG(sig64, 5) ncSpanInitC(&dataSpan, data, dataSize); /* Compute sha256 of the data before signing */ if(ncCryptoDigestSha256(&dataSpan, digest) != CSTATUS_OK) { return E_INVALID_ARG; } /* Sign the freshly computed digest */ return NCSignDigest(ctx, sk, random32, digest, sig64); } NC_EXPORT NCResult NC_CC NCVerifyDigest( const NCContext* ctx, const NCPublicKey* pk, const uint8_t digest32[32], const uint8_t sig64[64] ) { int result; secp256k1_xonly_pubkey xonly; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(pk, 1) CHECK_NULL_ARG(digest32, 2) CHECK_NULL_ARG(sig64, 3) /* recover the x-only key from a compressed public key */ if(_convertToXonly(ctx, pk, &xonly) != 1) { return E_INVALID_ARG; } result = secp256k1_schnorrsig_verify(ctx->secpCtx, sig64, digest32, 32, &xonly); ZERO_FILL(&xonly, sizeof(xonly)); return result == 1 ? NC_SUCCESS : E_INVALID_ARG; } NC_EXPORT NCResult NC_CC NCVerifyData( const NCContext* ctx, const NCPublicKey* pk, const uint8_t* data, const uint32_t dataSize, const uint8_t sig64[64] ) { sha256_t digest; cspan_t dataSpan; CHECK_NULL_ARG(ctx, 0) CHECK_NULL_ARG(pk, 1) CHECK_NULL_ARG(data, 2) CHECK_ARG_RANGE(dataSize, 1, UINT32_MAX, 3) CHECK_NULL_ARG(sig64, 4) ncSpanInitC(&dataSpan, data, dataSize); /* Compute sha256 of the data before verifying */ if (ncCryptoDigestSha256(&dataSpan, digest) != CSTATUS_OK) { return E_INVALID_ARG; } return NCVerifyDigest(ctx, pk, digest, sig64); } /* ============================= * * ECDH functions * * ============================= */ NC_EXPORT NCResult NC_CC NCGetSharedSecret( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* otherPk, uint8_t sharedPoint[NC_SHARED_SEC_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(otherPk, 2) CHECK_NULL_ARG(sharedPoint, 3) return _computeSharedSecret(ctx, sk, otherPk, (struct shared_secret*)sharedPoint); } NC_EXPORT NCResult NC_CC NCGetConversationKeyEx( const NCContext* ctx, const uint8_t sharedPoint[NC_SHARED_SEC_SIZE], uint8_t conversationKey[NC_CONV_KEY_SIZE] ) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sharedPoint, 1) CHECK_NULL_ARG(conversationKey, 2) /* Cast the shared point to the shared secret type */ return _computeConversationKey( ctx, (struct shared_secret*)sharedPoint, (struct conversation_key*)conversationKey ); } NC_EXPORT NCResult NC_CC NCGetConversationKey( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, uint8_t conversationKey[NC_CONV_KEY_SIZE] ) { NCResult result; struct shared_secret sharedSecret; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(conversationKey, 3) /* Compute the shared point */ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } result = _computeConversationKey(ctx, &sharedSecret, (struct conversation_key*)conversationKey); Cleanup: /* Clean up sensitive data */ ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); return result; } NC_EXPORT NCResult NC_CC NCEncryptEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCEncryptionArgs* args ) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(conversationKey, 1) CHECK_NULL_ARG(args, 2) /* Validte ciphertext/plaintext */ CHECK_INVALID_ARG(args->inputData, 2) CHECK_INVALID_ARG(args->outputData, 2) CHECK_INVALID_ARG(args->nonceData, 2) CHECK_INVALID_ARG(args->keyData, 2) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 2) switch (args->version) { /* TODO: Implement nip04 */ case NC_ENC_VERSION_NIP04: return E_VERSION_NOT_SUPPORTED; case NC_ENC_VERSION_NIP44: return _encryptNip44Ex(ctx, (struct conversation_key*)conversationKey, args->keyData, args); default: return E_VERSION_NOT_SUPPORTED; } } NC_EXPORT NCResult NC_CC NCEncrypt( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, NCEncryptionArgs* args ) { NCResult result; struct shared_secret sharedSecret; struct conversation_key conversationKey; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(args, 3) /* Validate input/output data */ CHECK_INVALID_ARG(args->inputData, 3) CHECK_INVALID_ARG(args->outputData, 3) CHECK_INVALID_ARG(args->nonceData, 3) CHECK_INVALID_ARG(args->keyData, 3) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) result = E_OPERATION_FAILED; switch(args->version) { case NC_ENC_VERSION_NIP44: { /* Compute the shared point */ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } /* Compute the conversation key from secret and pubkic keys */ if ((result = _computeConversationKey(ctx, &sharedSecret, &conversationKey)) != NC_SUCCESS) { goto Cleanup; } result = _encryptNip44Ex(ctx, &conversationKey, args->keyData, args); } break; /* At the moment nip04 compatability is not supported */ case NC_ENC_VERSION_NIP04: default: result = E_VERSION_NOT_SUPPORTED; break; } Cleanup: /* Clean up sensitive data */ ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); ZERO_FILL(&conversationKey, sizeof(conversationKey)); return result; } NC_EXPORT NCResult NC_CC NCDecryptEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCEncryptionArgs* args ) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(conversationKey, 1) CHECK_NULL_ARG(args, 2) /* Validte ciphertext/plaintext */ CHECK_INVALID_ARG(args->inputData, 2) CHECK_INVALID_ARG(args->outputData, 2) CHECK_INVALID_ARG(args->nonceData, 2) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 2) switch (args->version) { case NC_ENC_VERSION_NIP44: return _decryptNip44Ex(ctx, (struct conversation_key*)conversationKey, args); case NC_ENC_VERSION_NIP04: default: return E_VERSION_NOT_SUPPORTED; } } NC_EXPORT NCResult NC_CC NCDecrypt( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, NCEncryptionArgs* args ) { NCResult result; struct shared_secret sharedSecret; struct conversation_key conversationKey; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(args, 3) /* Validte ciphertext/plaintext */ CHECK_INVALID_ARG(args->inputData, 3) CHECK_INVALID_ARG(args->outputData, 3) CHECK_INVALID_ARG(args->nonceData, 3) CHECK_ARG_RANGE(args->dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) result = E_OPERATION_FAILED; switch (args->version) { case NC_ENC_VERSION_NIP44: { if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } if ((result = _computeConversationKey(ctx, &sharedSecret, &conversationKey)) != NC_SUCCESS) { goto Cleanup; } result = _decryptNip44Ex(ctx, &conversationKey, args); } break; case NC_ENC_VERSION_NIP04: default: result = E_VERSION_NOT_SUPPORTED; break; } Cleanup: /* Clean up sensitive data */ ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); ZERO_FILL(&conversationKey, sizeof(conversationKey)); return result; } NC_EXPORT NCResult NCComputeMac( const NCContext* ctx, const uint8_t hmacKey[NC_HMAC_KEY_SIZE], const uint8_t* payload, uint32_t payloadSize, uint8_t hmacOut[NC_ENCRYPTION_MAC_SIZE] ) { cspan_t payloadSpan; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(hmacKey, 1) CHECK_NULL_ARG(payload, 2) CHECK_ARG_RANGE(payloadSize, 1, UINT32_MAX, 3) CHECK_NULL_ARG(hmacOut, 4) ncSpanInitC(&payloadSpan, payload, payloadSize); /* * Compute the hmac of the data using the supplied hmac key */ return _computeHmac(hmacKey, &payloadSpan, hmacOut) == CSTATUS_OK ? NC_SUCCESS : E_OPERATION_FAILED; } NC_EXPORT NCResult NC_CC NCVerifyMacEx( const NCContext* ctx, const uint8_t conversationKey[NC_CONV_KEY_SIZE], NCMacVerifyArgs* args ) { CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(conversationKey, 1) CHECK_NULL_ARG(args, 2) CHECK_INVALID_ARG(args->mac32, 2) CHECK_INVALID_ARG(args->payload, 2) CHECK_INVALID_ARG(args->nonce32, 2) CHECK_ARG_RANGE(args->payloadSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 2) return _verifyMacEx(ctx, conversationKey, args); } NC_EXPORT NCResult NC_CC NCVerifyMac( const NCContext* ctx, const NCSecretKey* sk, const NCPublicKey* pk, NCMacVerifyArgs* args ) { NCResult result; struct shared_secret sharedSecret; struct conversation_key conversationKey; CHECK_NULL_ARG(ctx, 0) CHECK_CONTEXT_STATE(ctx, 0) CHECK_NULL_ARG(sk, 1) CHECK_NULL_ARG(pk, 2) CHECK_NULL_ARG(args, 3) CHECK_INVALID_ARG(args->mac32, 3) CHECK_INVALID_ARG(args->payload, 3) CHECK_INVALID_ARG(args->nonce32, 3) CHECK_ARG_RANGE(args->payloadSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) /* Computed the shared point so we can get the converstation key */ if ((result = _computeSharedSecret(ctx, sk, pk, &sharedSecret)) != NC_SUCCESS) { goto Cleanup; } if ((result = _computeConversationKey(ctx, &sharedSecret, &conversationKey)) != NC_SUCCESS) { goto Cleanup; } result = _verifyMacEx(ctx, conversationKey.value, args); Cleanup: /* Clean up sensitive data */ ZERO_FILL(&sharedSecret, sizeof(sharedSecret)); ZERO_FILL(&conversationKey, sizeof(conversationKey)); return result; } #define ENSURE_ENC_MODE(args, mode) if(args->version != mode) return E_VERSION_NOT_SUPPORTED; NC_EXPORT NCResult NCSetEncryptionPropertyEx( NCEncryptionArgs* args, uint32_t property, uint8_t* value, uint32_t valueLen ) { CHECK_NULL_ARG(args, 0) CHECK_NULL_ARG(value, 2) switch (property) { case NC_ENC_SET_VERSION: /* Ensure version is proper length */ CHECK_ARG_RANGE(valueLen, sizeof(uint32_t), sizeof(uint32_t), 2) args->version = *((uint32_t*)value); return NC_SUCCESS; case NC_ENC_SET_NIP04_IV: /* * The safest way to store the nip04 IV is in the nonce * field. An IV is essentially a nonce. A secure random * number used to encrypt the first block of a CBC chain. */ CHECK_ARG_RANGE(valueLen, AES_IV_SIZE, UINT32_MAX, 3) ENSURE_ENC_MODE(args, NC_ENC_VERSION_NIP04) args->nonceData = value; return NC_SUCCESS; case NC_ENC_SET_NIP04_KEY: /* * The AES key is stored in the hmac key field, since * it won't be used for the operating and should be the same size * as the hmac key. */ CHECK_ARG_RANGE(valueLen, AES_KEY_SIZE, UINT32_MAX, 3) ENSURE_ENC_MODE(args, NC_ENC_VERSION_NIP04) args->keyData = value; return NC_SUCCESS; case NC_ENC_SET_NIP44_NONCE: /* Nonce buffer must be at least the size, max doesnt matter */ CHECK_ARG_RANGE(valueLen, NC_ENCRYPTION_NONCE_SIZE, UINT32_MAX, 3) /* Nonce is only used in nip44 mode */ ENSURE_ENC_MODE(args, NC_ENC_VERSION_NIP44) args->nonceData = value; return NC_SUCCESS; case NC_ENC_SET_NIP44_MAC_KEY: /* The maximum size of the buffer doesn't matter as long as its larger than the key size */ CHECK_ARG_RANGE(valueLen, NC_HMAC_KEY_SIZE, UINT32_MAX, 3) /* Mac key is only used in nip44 mode */ ENSURE_ENC_MODE(args, NC_ENC_VERSION_NIP44) /* * During encryption the key data buffer is used * to write the hmac hey used for MAC computation * operations. */ args->keyData = value; return NC_SUCCESS; } return E_INVALID_ARG; } NC_EXPORT NCResult NCSetEncryptionProperty( NCEncryptionArgs* args, uint32_t property, uint32_t value ) { return NCSetEncryptionPropertyEx( args, property, (uint8_t*)&value, sizeof(uint32_t) ); } NC_EXPORT NCResult NCSetEncryptionData( NCEncryptionArgs* args, const uint8_t* input, uint8_t* output, uint32_t dataSize ) { CHECK_NULL_ARG(args, 0) CHECK_NULL_ARG(input, 1) CHECK_NULL_ARG(output, 2) CHECK_ARG_RANGE(dataSize, NIP44_MIN_ENC_MESSAGE_SIZE, NIP44_MAX_ENC_MESSAGE_SIZE, 3) args->inputData = input; args->outputData = output; args->dataSize = dataSize; return NC_SUCCESS; }