aboutsummaryrefslogtreecommitdiff
path: root/include/psa/crypto_values.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/psa/crypto_values.h')
-rw-r--r--include/psa/crypto_values.h2763
1 files changed, 2763 insertions, 0 deletions
diff --git a/include/psa/crypto_values.h b/include/psa/crypto_values.h
new file mode 100644
index 0000000..a17879b
--- /dev/null
+++ b/include/psa/crypto_values.h
@@ -0,0 +1,2763 @@
+/**
+ * \file psa/crypto_values.h
+ *
+ * \brief PSA cryptography module: macros to build and analyze integer values.
+ *
+ * \note This file may not be included directly. Applications must
+ * include psa/crypto.h. Drivers must include the appropriate driver
+ * header file.
+ *
+ * This file contains portable definitions of macros to build and analyze
+ * values of integral types that encode properties of cryptographic keys,
+ * designations of cryptographic algorithms, and error codes returned by
+ * the library.
+ *
+ * Note that many of the constants defined in this file are embedded in
+ * the persistent key store, as part of key metadata (including usage
+ * policies). As a consequence, they must not be changed (unless the storage
+ * format version changes).
+ *
+ * This header file only defines preprocessor macros.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef PSA_CRYPTO_VALUES_H
+#define PSA_CRYPTO_VALUES_H
+#include "mbedtls/private_access.h"
+
+/** \defgroup error Error codes
+ * @{
+ */
+
+/* PSA error codes */
+
+/* Error codes are standardized across PSA domains (framework, crypto, storage,
+ * etc.). Do not change the values in this section or even the expansions
+ * of each macro: it must be possible to `#include` both this header
+ * and some other PSA component's headers in the same C source,
+ * which will lead to duplicate definitions of the `PSA_SUCCESS` and
+ * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
+ * to the same sequence of tokens.
+ *
+ * If you must add a new
+ * value, check with the Arm PSA framework group to pick one that other
+ * domains aren't already using. */
+
+/* Tell uncrustify not to touch the constant definitions, otherwise
+ * it might change the spacing to something that is not PSA-compliant
+ * (e.g. adding a space after casts).
+ *
+ * *INDENT-OFF*
+ */
+
+/** The action was completed successfully. */
+#define PSA_SUCCESS ((psa_status_t)0)
+
+/** An error occurred that does not correspond to any defined
+ * failure cause.
+ *
+ * Implementations may use this error code if none of the other standard
+ * error codes are applicable. */
+#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
+
+/** The requested operation or a parameter is not supported
+ * by this implementation.
+ *
+ * Implementations should return this error code when an enumeration
+ * parameter such as a key type, algorithm, etc. is not recognized.
+ * If a combination of parameters is recognized and identified as
+ * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
+#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
+
+/** The requested action is denied by a policy.
+ *
+ * Implementations should return this error code when the parameters
+ * are recognized as valid and supported, and a policy explicitly
+ * denies the requested operation.
+ *
+ * If a subset of the parameters of a function call identify a
+ * forbidden operation, and another subset of the parameters are
+ * not valid or not supported, it is unspecified whether the function
+ * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
+ * #PSA_ERROR_INVALID_ARGUMENT. */
+#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
+
+/** An output buffer is too small.
+ *
+ * Applications can call the \c PSA_xxx_SIZE macro listed in the function
+ * description to determine a sufficient buffer size.
+ *
+ * Implementations should preferably return this error code only
+ * in cases when performing the operation with a larger output
+ * buffer would succeed. However implementations may return this
+ * error if a function has invalid or unsupported parameters in addition
+ * to the parameters that determine the necessary output buffer size. */
+#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
+
+/** Asking for an item that already exists
+ *
+ * Implementations should return this error, when attempting
+ * to write an item (like a key) that already exists. */
+#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
+
+/** Asking for an item that doesn't exist
+ *
+ * Implementations should return this error, if a requested item (like
+ * a key) does not exist. */
+#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
+
+/** The requested action cannot be performed in the current state.
+ *
+ * Multipart operations return this error when one of the
+ * functions is called out of sequence. Refer to the function
+ * descriptions for permitted sequencing of functions.
+ *
+ * Implementations shall not return this error code to indicate
+ * that a key either exists or not,
+ * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
+ * as applicable.
+ *
+ * Implementations shall not return this error code to indicate that a
+ * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
+ * instead. */
+#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
+
+/** The parameters passed to the function are invalid.
+ *
+ * Implementations may return this error any time a parameter or
+ * combination of parameters are recognized as invalid.
+ *
+ * Implementations shall not return this error code to indicate that a
+ * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
+ * instead.
+ */
+#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
+
+/** There is not enough runtime memory.
+ *
+ * If the action is carried out across multiple security realms, this
+ * error can refer to available memory in any of the security realms. */
+#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
+
+/** There is not enough persistent storage.
+ *
+ * Functions that modify the key storage return this error code if
+ * there is insufficient storage space on the host media. In addition,
+ * many functions that do not otherwise access storage may return this
+ * error code if the implementation requires a mandatory log entry for
+ * the requested action and the log storage space is full. */
+#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
+
+/** There was a communication failure inside the implementation.
+ *
+ * This can indicate a communication failure between the application
+ * and an external cryptoprocessor or between the cryptoprocessor and
+ * an external volatile or persistent memory. A communication failure
+ * may be transient or permanent depending on the cause.
+ *
+ * \warning If a function returns this error, it is undetermined
+ * whether the requested action has completed or not. Implementations
+ * should return #PSA_SUCCESS on successful completion whenever
+ * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
+ * if the requested action was completed successfully in an external
+ * cryptoprocessor but there was a breakdown of communication before
+ * the cryptoprocessor could report the status to the application.
+ */
+#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
+
+/** There was a storage failure that may have led to data loss.
+ *
+ * This error indicates that some persistent storage is corrupted.
+ * It should not be used for a corruption of volatile memory
+ * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
+ * between the cryptoprocessor and its external storage (use
+ * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
+ * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
+ *
+ * Note that a storage failure does not indicate that any data that was
+ * previously read is invalid. However this previously read data may no
+ * longer be readable from storage.
+ *
+ * When a storage failure occurs, it is no longer possible to ensure
+ * the global integrity of the keystore. Depending on the global
+ * integrity guarantees offered by the implementation, access to other
+ * data may or may not fail even if the data is still readable but
+ * its integrity cannot be guaranteed.
+ *
+ * Implementations should only use this error code to report a
+ * permanent storage corruption. However application writers should
+ * keep in mind that transient errors while reading the storage may be
+ * reported using this error code. */
+#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
+
+/** A hardware failure was detected.
+ *
+ * A hardware failure may be transient or permanent depending on the
+ * cause. */
+#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
+
+/** A tampering attempt was detected.
+ *
+ * If an application receives this error code, there is no guarantee
+ * that previously accessed or computed data was correct and remains
+ * confidential. Applications should not perform any security function
+ * and should enter a safe failure state.
+ *
+ * Implementations may return this error code if they detect an invalid
+ * state that cannot happen during normal operation and that indicates
+ * that the implementation's security guarantees no longer hold. Depending
+ * on the implementation architecture and on its security and safety goals,
+ * the implementation may forcibly terminate the application.
+ *
+ * This error code is intended as a last resort when a security breach
+ * is detected and it is unsure whether the keystore data is still
+ * protected. Implementations shall only return this error code
+ * to report an alarm from a tampering detector, to indicate that
+ * the confidentiality of stored data can no longer be guaranteed,
+ * or to indicate that the integrity of previously returned data is now
+ * considered compromised. Implementations shall not use this error code
+ * to indicate a hardware failure that merely makes it impossible to
+ * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
+ * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
+ * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
+ * instead).
+ *
+ * This error indicates an attack against the application. Implementations
+ * shall not return this error code as a consequence of the behavior of
+ * the application itself. */
+#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
+
+/** There is not enough entropy to generate random data needed
+ * for the requested action.
+ *
+ * This error indicates a failure of a hardware random generator.
+ * Application writers should note that this error can be returned not
+ * only by functions whose purpose is to generate random data, such
+ * as key, IV or nonce generation, but also by functions that execute
+ * an algorithm with a randomized result, as well as functions that
+ * use randomization of intermediate computations as a countermeasure
+ * to certain attacks.
+ *
+ * Implementations should avoid returning this error after psa_crypto_init()
+ * has succeeded. Implementations should generate sufficient
+ * entropy during initialization and subsequently use a cryptographically
+ * secure pseudorandom generator (PRNG). However implementations may return
+ * this error at any time if a policy requires the PRNG to be reseeded
+ * during normal operation. */
+#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
+
+/** The signature, MAC or hash is incorrect.
+ *
+ * Verification functions return this error if the verification
+ * calculations completed successfully, and the value to be verified
+ * was determined to be incorrect.
+ *
+ * If the value to verify has an invalid size, implementations may return
+ * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
+#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
+
+/** The decrypted padding is incorrect.
+ *
+ * \warning In some protocols, when decrypting data, it is essential that
+ * the behavior of the application does not depend on whether the padding
+ * is correct, down to precise timing. Applications should prefer
+ * protocols that use authenticated encryption rather than plain
+ * encryption. If the application must perform a decryption of
+ * unauthenticated data, the application writer should take care not
+ * to reveal whether the padding is invalid.
+ *
+ * Implementations should strive to make valid and invalid padding
+ * as close as possible to indistinguishable to an external observer.
+ * In particular, the timing of a decryption operation should not
+ * depend on the validity of the padding. */
+#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
+
+/** Return this error when there's insufficient data when attempting
+ * to read from a resource. */
+#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
+
+/** The key identifier is not valid. See also :ref:\`key-handles\`.
+ */
+#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
+
+/** Stored data has been corrupted.
+ *
+ * This error indicates that some persistent storage has suffered corruption.
+ * It does not indicate the following situations, which have specific error
+ * codes:
+ *
+ * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
+ * - A communication error between the cryptoprocessor and its external
+ * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
+ * - When the storage is in a valid state but is full - use
+ * #PSA_ERROR_INSUFFICIENT_STORAGE.
+ * - When the storage fails for other reasons - use
+ * #PSA_ERROR_STORAGE_FAILURE.
+ * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
+ *
+ * \note A storage corruption does not indicate that any data that was
+ * previously read is invalid. However this previously read data might no
+ * longer be readable from storage.
+ *
+ * When a storage failure occurs, it is no longer possible to ensure the
+ * global integrity of the keystore.
+ */
+#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
+
+/** Data read from storage is not valid for the implementation.
+ *
+ * This error indicates that some data read from storage does not have a valid
+ * format. It does not indicate the following situations, which have specific
+ * error codes:
+ *
+ * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
+ * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
+ * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
+ *
+ * This error is typically a result of either storage corruption on a
+ * cleartext storage backend, or an attempt to read data that was
+ * written by an incompatible version of the library.
+ */
+#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
+
+/** The function that returns this status is defined as interruptible and
+ * still has work to do, thus the user should call the function again with the
+ * same operation context until it either returns #PSA_SUCCESS or any other
+ * error. This is not an error per se, more a notification of status.
+ */
+#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
+
+/* *INDENT-ON* */
+
+/**@}*/
+
+/** \defgroup crypto_types Key and algorithm types
+ * @{
+ */
+
+/* Note that key type values, including ECC family and DH group values, are
+ * embedded in the persistent key store, as part of key metadata. As a
+ * consequence, they must not be changed (unless the storage format version
+ * changes).
+ */
+
+/** An invalid key type value.
+ *
+ * Zero is not the encoding of any key type.
+ */
+#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
+
+/** Vendor-defined key type flag.
+ *
+ * Key types defined by this standard will never have the
+ * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
+ * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
+ * respect the bitwise structure used by standard encodings whenever practical.
+ */
+#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
+
+#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
+#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
+#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
+#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
+#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
+
+#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
+
+/** Whether a key type is vendor-defined.
+ *
+ * See also #PSA_KEY_TYPE_VENDOR_FLAG.
+ */
+#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
+ (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
+
+/** Whether a key type is an unstructured array of bytes.
+ *
+ * This encompasses both symmetric keys and non-key data.
+ */
+#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
+ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
+ ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
+
+/** Whether a key type is asymmetric: either a key pair or a public key. */
+#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
+ (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
+ & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
+ PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
+/** Whether a key type is the public part of a key pair. */
+#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
+ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
+/** Whether a key type is a key pair containing a private part and a public
+ * part. */
+#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
+ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
+/** The key pair type corresponding to a public key type.
+ *
+ * You may also pass a key pair type as \p type, it will be left unchanged.
+ *
+ * \param type A public key type or key pair type.
+ *
+ * \return The corresponding key pair type.
+ * If \p type is not a public key or a key pair,
+ * the return value is undefined.
+ */
+#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
+ ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
+/** The public key type corresponding to a key pair type.
+ *
+ * You may also pass a key pair type as \p type, it will be left unchanged.
+ *
+ * \param type A public key type or key pair type.
+ *
+ * \return The corresponding public key type.
+ * If \p type is not a public key or a key pair,
+ * the return value is undefined.
+ */
+#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
+ ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
+
+/** Raw data.
+ *
+ * A "key" of this type cannot be used for any cryptographic operation.
+ * Applications may use this type to store arbitrary data in the keystore. */
+#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
+
+/** HMAC key.
+ *
+ * The key policy determines which underlying hash algorithm the key can be
+ * used for.
+ *
+ * HMAC keys should generally have the same size as the underlying hash.
+ * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
+ * \c alg is the HMAC algorithm or the underlying hash algorithm. */
+#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
+
+/** A secret for key derivation.
+ *
+ * This key type is for high-entropy secrets only. For low-entropy secrets,
+ * #PSA_KEY_TYPE_PASSWORD should be used instead.
+ *
+ * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
+ * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
+ *
+ * The key policy determines which key derivation algorithm the key
+ * can be used for.
+ */
+#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
+
+/** A low-entropy secret for password hashing or key derivation.
+ *
+ * This key type is suitable for passwords and passphrases which are typically
+ * intended to be memorizable by humans, and have a low entropy relative to
+ * their size. It can be used for randomly generated or derived keys with
+ * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
+ * for such keys. It is not suitable for passwords with extremely low entropy,
+ * such as numerical PINs.
+ *
+ * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
+ * key derivation algorithms. Algorithms that accept such an input were
+ * designed to accept low-entropy secret and are known as password hashing or
+ * key stretching algorithms.
+ *
+ * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
+ * key derivation algorithms, as the algorithms that take such an input expect
+ * it to be high-entropy.
+ *
+ * The key policy determines which key derivation algorithm the key can be
+ * used for, among the permissible subset defined above.
+ */
+#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
+
+/** A secret value that can be used to verify a password hash.
+ *
+ * The key policy determines which key derivation algorithm the key
+ * can be used for, among the same permissible subset as for
+ * #PSA_KEY_TYPE_PASSWORD.
+ */
+#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
+
+/** A secret value that can be used in when computing a password hash.
+ *
+ * The key policy determines which key derivation algorithm the key
+ * can be used for, among the subset of algorithms that can use pepper.
+ */
+#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
+
+/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
+ *
+ * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
+ * 32 bytes (AES-256).
+ */
+#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
+
+/** Key for a cipher, AEAD or MAC algorithm based on the
+ * ARIA block cipher. */
+#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
+
+/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
+ *
+ * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
+ * 192 bits (3-key 3DES).
+ *
+ * Note that single DES and 2-key 3DES are weak and strongly
+ * deprecated and should only be used to decrypt legacy data. 3-key 3DES
+ * is weak and deprecated and should only be used in legacy protocols.
+ */
+#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
+
+/** Key for a cipher, AEAD or MAC algorithm based on the
+ * Camellia block cipher. */
+#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
+
+/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
+ *
+ * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
+ *
+ * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
+ * 12-byte nonces.
+ *
+ * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
+ * with the initial counter value 1, you can process and discard a
+ * 64-byte block before the real data.
+ */
+#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
+
+/** RSA public key.
+ *
+ * The size of an RSA key is the bit size of the modulus.
+ */
+#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
+/** RSA key pair (private and public key).
+ *
+ * The size of an RSA key is the bit size of the modulus.
+ */
+#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
+/** Whether a key type is an RSA key (pair or public-only). */
+#define PSA_KEY_TYPE_IS_RSA(type) \
+ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
+
+#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
+#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
+#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
+/** Elliptic curve key pair.
+ *
+ * The size of an elliptic curve key is the bit size associated with the curve,
+ * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
+ * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
+ *
+ * \param curve A value of type ::psa_ecc_family_t that
+ * identifies the ECC curve to be used.
+ */
+#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
+ (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
+/** Elliptic curve public key.
+ *
+ * The size of an elliptic curve public key is the same as the corresponding
+ * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
+ * `PSA_ECC_FAMILY_xxx` curve families).
+ *
+ * \param curve A value of type ::psa_ecc_family_t that
+ * identifies the ECC curve to be used.
+ */
+#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
+ (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
+
+/** Whether a key type is an elliptic curve key (pair or public-only). */
+#define PSA_KEY_TYPE_IS_ECC(type) \
+ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
+ ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
+/** Whether a key type is an elliptic curve key pair. */
+#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
+ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
+ PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
+/** Whether a key type is an elliptic curve public key. */
+#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
+ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
+ PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
+
+/** Extract the curve from an elliptic curve key type. */
+#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
+ ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
+ ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
+ 0))
+
+/** Check if the curve of given family is Weierstrass elliptic curve. */
+#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
+
+/** SEC Koblitz curves over prime fields.
+ *
+ * This family comprises the following curves:
+ * secp192k1, secp224k1, secp256k1.
+ * They are defined in _Standards for Efficient Cryptography_,
+ * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
+ * https://www.secg.org/sec2-v2.pdf
+ */
+#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
+
+/** SEC random curves over prime fields.
+ *
+ * This family comprises the following curves:
+ * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
+ * They are defined in _Standards for Efficient Cryptography_,
+ * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
+ * https://www.secg.org/sec2-v2.pdf
+ */
+#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
+/* SECP160R2 (SEC2 v1, obsolete) */
+#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
+
+/** SEC Koblitz curves over binary fields.
+ *
+ * This family comprises the following curves:
+ * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
+ * They are defined in _Standards for Efficient Cryptography_,
+ * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
+ * https://www.secg.org/sec2-v2.pdf
+ */
+#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
+
+/** SEC random curves over binary fields.
+ *
+ * This family comprises the following curves:
+ * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
+ * They are defined in _Standards for Efficient Cryptography_,
+ * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
+ * https://www.secg.org/sec2-v2.pdf
+ */
+#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
+
+/** SEC additional random curves over binary fields.
+ *
+ * This family comprises the following curve:
+ * sect163r2.
+ * It is defined in _Standards for Efficient Cryptography_,
+ * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
+ * https://www.secg.org/sec2-v2.pdf
+ */
+#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
+
+/** Brainpool P random curves.
+ *
+ * This family comprises the following curves:
+ * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
+ * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
+ * It is defined in RFC 5639.
+ */
+#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
+
+/** Curve25519 and Curve448.
+ *
+ * This family comprises the following Montgomery curves:
+ * - 255-bit: Bernstein et al.,
+ * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
+ * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
+ * - 448-bit: Hamburg,
+ * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
+ * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
+ */
+#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
+
+/** The twisted Edwards curves Ed25519 and Ed448.
+ *
+ * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
+ * #PSA_ALG_ED25519PH for the 255-bit curve,
+ * #PSA_ALG_ED448PH for the 448-bit curve).
+ *
+ * This family comprises the following twisted Edwards curves:
+ * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
+ * to Curve25519.
+ * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
+ * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
+ * to Curve448.
+ * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
+ */
+#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
+
+#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
+#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
+#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
+/** Diffie-Hellman key pair.
+ *
+ * \param group A value of type ::psa_dh_family_t that identifies the
+ * Diffie-Hellman group to be used.
+ */
+#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
+ (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
+/** Diffie-Hellman public key.
+ *
+ * \param group A value of type ::psa_dh_family_t that identifies the
+ * Diffie-Hellman group to be used.
+ */
+#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
+ (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
+
+/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
+#define PSA_KEY_TYPE_IS_DH(type) \
+ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
+ ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
+/** Whether a key type is a Diffie-Hellman key pair. */
+#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
+ (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
+ PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
+/** Whether a key type is a Diffie-Hellman public key. */
+#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
+ (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
+ PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
+
+/** Extract the group from a Diffie-Hellman key type. */
+#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
+ ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
+ ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
+ 0))
+
+/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
+ *
+ * This family includes groups with the following key sizes (in bits):
+ * 2048, 3072, 4096, 6144, 8192. A given implementation may support
+ * all of these sizes or only a subset.
+ */
+#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
+
+#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
+ (((type) >> 8) & 7)
+/** The block size of a block cipher.
+ *
+ * \param type A cipher key type (value of type #psa_key_type_t).
+ *
+ * \return The block size for a block cipher, or 1 for a stream cipher.
+ * The return value is undefined if \p type is not a supported
+ * cipher key type.
+ *
+ * \note It is possible to build stream cipher algorithms on top of a block
+ * cipher, for example CTR mode (#PSA_ALG_CTR).
+ * This macro only takes the key type into account, so it cannot be
+ * used to determine the size of the data that #psa_cipher_update()
+ * might buffer for future processing in general.
+ *
+ * \note This macro returns a compile-time constant if its argument is one.
+ *
+ * \warning This macro may evaluate its argument multiple times.
+ */
+#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
+ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
+ 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
+ 0u)
+
+/* Note that algorithm values are embedded in the persistent key store,
+ * as part of key metadata. As a consequence, they must not be changed
+ * (unless the storage format version changes).
+ */
+
+/** Vendor-defined algorithm flag.
+ *
+ * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
+ * bit set. Vendors who define additional algorithms must use an encoding with
+ * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
+ * used by standard encodings whenever practical.
+ */
+#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
+
+#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
+#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
+#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
+#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
+#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
+#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
+#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
+#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
+#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
+
+/** Whether an algorithm is vendor-defined.
+ *
+ * See also #PSA_ALG_VENDOR_FLAG.
+ */
+#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
+ (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
+
+/** Whether the specified algorithm is a hash algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a hash algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_HASH(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
+
+/** Whether the specified algorithm is a MAC algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_MAC(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
+
+/** Whether the specified algorithm is a symmetric cipher algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_CIPHER(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
+
+/** Whether the specified algorithm is an authenticated encryption
+ * with associated data (AEAD) algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_AEAD(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
+
+/** Whether the specified algorithm is an asymmetric signature algorithm,
+ * also known as public-key signature algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_SIGN(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
+
+/** Whether the specified algorithm is an asymmetric encryption algorithm,
+ * also known as public-key encryption algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
+
+/** Whether the specified algorithm is a key agreement algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
+
+/** Whether the specified algorithm is a key derivation algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_KEY_DERIVATION(alg) \
+ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
+
+/** Whether the specified algorithm is a key stretching / password hashing
+ * algorithm.
+ *
+ * A key stretching / password hashing algorithm is a key derivation algorithm
+ * that is suitable for use with a low-entropy secret such as a password.
+ * Equivalently, it's a key derivation algorithm that uses a
+ * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
+ * otherwise. This macro may return either 0 or 1 if \p alg is not a
+ * supported algorithm identifier.
+ */
+#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
+ (PSA_ALG_IS_KEY_DERIVATION(alg) && \
+ (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
+
+/** An invalid algorithm identifier value. */
+/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
+#define PSA_ALG_NONE ((psa_algorithm_t)0)
+/* *INDENT-ON* */
+
+#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
+/** MD5 */
+#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
+/** PSA_ALG_RIPEMD160 */
+#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
+/** SHA1 */
+#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
+/** SHA2-224 */
+#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
+/** SHA2-256 */
+#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
+/** SHA2-384 */
+#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
+/** SHA2-512 */
+#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
+/** SHA2-512/224 */
+#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
+/** SHA2-512/256 */
+#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
+/** SHA3-224 */
+#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
+/** SHA3-256 */
+#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
+/** SHA3-384 */
+#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
+/** SHA3-512 */
+#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
+/** The first 512 bits (64 bytes) of the SHAKE256 output.
+ *
+ * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
+ * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
+ * has the same output size and a (theoretically) higher security strength.
+ */
+#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
+
+/** In a hash-and-sign algorithm policy, allow any hash algorithm.
+ *
+ * This value may be used to form the algorithm usage field of a policy
+ * for a signature algorithm that is parametrized by a hash. The key
+ * may then be used to perform operations using the same signature
+ * algorithm parametrized with any supported hash.
+ *
+ * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
+ * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
+ * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
+ * Then you may create and use a key as follows:
+ * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
+ * ```
+ * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
+ * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
+ * ```
+ * - Import or generate key material.
+ * - Call psa_sign_hash() or psa_verify_hash(), passing
+ * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
+ * call to sign or verify a message may use a different hash.
+ * ```
+ * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
+ * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
+ * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
+ * ```
+ *
+ * This value may not be used to build other algorithms that are
+ * parametrized over a hash. For any valid use of this macro to build
+ * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
+ *
+ * This value may not be used to build an algorithm specification to
+ * perform an operation. It is only valid to build policies.
+ */
+#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
+
+#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
+#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
+/** Macro to build an HMAC algorithm.
+ *
+ * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding HMAC algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_HMAC(hash_alg) \
+ (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
+ (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
+
+/** Whether the specified algorithm is an HMAC algorithm.
+ *
+ * HMAC is a family of MAC algorithms that are based on a hash function.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_HMAC(alg) \
+ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
+ PSA_ALG_HMAC_BASE)
+
+/* In the encoding of a MAC algorithm, the bits corresponding to
+ * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
+ * truncated. As an exception, the value 0 means the untruncated algorithm,
+ * whatever its length is. The length is encoded in 6 bits, so it can
+ * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
+ * to full length is correctly encoded as 0 and any non-trivial truncation
+ * is correctly encoded as a value between 1 and 63. */
+#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
+#define PSA_MAC_TRUNCATION_OFFSET 16
+
+/* In the encoding of a MAC algorithm, the bit corresponding to
+ * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
+ * is a wildcard algorithm. A key with such wildcard algorithm as permitted
+ * algorithm policy can be used with any algorithm corresponding to the
+ * same base class and having a (potentially truncated) MAC length greater or
+ * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
+#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
+
+/** Macro to build a truncated MAC algorithm.
+ *
+ * A truncated MAC algorithm is identical to the corresponding MAC
+ * algorithm except that the MAC value for the truncated algorithm
+ * consists of only the first \p mac_length bytes of the MAC value
+ * for the untruncated algorithm.
+ *
+ * \note This macro may allow constructing algorithm identifiers that
+ * are not valid, either because the specified length is larger
+ * than the untruncated MAC or because the specified length is
+ * smaller than permitted by the implementation.
+ *
+ * \note It is implementation-defined whether a truncated MAC that
+ * is truncated to the same length as the MAC of the untruncated
+ * algorithm is considered identical to the untruncated algorithm
+ * for policy comparison purposes.
+ *
+ * \param mac_alg A MAC algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
+ * is true). This may be a truncated or untruncated
+ * MAC algorithm.
+ * \param mac_length Desired length of the truncated MAC in bytes.
+ * This must be at most the full length of the MAC
+ * and must be at least an implementation-specified
+ * minimum. The implementation-specified minimum
+ * shall not be zero.
+ *
+ * \return The corresponding MAC algorithm with the specified
+ * length.
+ * \return Unspecified if \p mac_alg is not a supported
+ * MAC algorithm or if \p mac_length is too small or
+ * too large for the specified MAC algorithm.
+ */
+#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
+ (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
+ PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
+ ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
+
+/** Macro to build the base MAC algorithm corresponding to a truncated
+ * MAC algorithm.
+ *
+ * \param mac_alg A MAC algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
+ * is true). This may be a truncated or untruncated
+ * MAC algorithm.
+ *
+ * \return The corresponding base MAC algorithm.
+ * \return Unspecified if \p mac_alg is not a supported
+ * MAC algorithm.
+ */
+#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
+ ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
+ PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
+
+/** Length to which a MAC algorithm is truncated.
+ *
+ * \param mac_alg A MAC algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
+ * is true).
+ *
+ * \return Length of the truncated MAC in bytes.
+ * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
+ * \return Unspecified if \p mac_alg is not a supported
+ * MAC algorithm.
+ */
+#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
+ (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
+
+/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
+ *
+ * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
+ * sharing the same base algorithm, and where the (potentially truncated) MAC
+ * length of the specific algorithm is equal to or larger then the wildcard
+ * algorithm's minimum MAC length.
+ *
+ * \note When setting the minimum required MAC length to less than the
+ * smallest MAC length allowed by the base algorithm, this effectively
+ * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
+ *
+ * \param mac_alg A MAC algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
+ * is true).
+ * \param min_mac_length Desired minimum length of the message authentication
+ * code in bytes. This must be at most the untruncated
+ * length of the MAC and must be at least 1.
+ *
+ * \return The corresponding MAC wildcard algorithm with the
+ * specified minimum length.
+ * \return Unspecified if \p mac_alg is not a supported MAC
+ * algorithm or if \p min_mac_length is less than 1 or
+ * too large for the specified MAC algorithm.
+ */
+#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
+ (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
+ PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
+
+#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
+/** The CBC-MAC construction over a block cipher
+ *
+ * \warning CBC-MAC is insecure in many cases.
+ * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
+ */
+#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
+/** The CMAC construction over a block cipher */
+#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
+
+/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
+ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
+ PSA_ALG_CIPHER_MAC_BASE)
+
+#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
+#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
+
+/** Whether the specified algorithm is a stream cipher.
+ *
+ * A stream cipher is a symmetric cipher that encrypts or decrypts messages
+ * by applying a bitwise-xor with a stream of bytes that is generated
+ * from a key.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier or if it is not a symmetric cipher algorithm.
+ */
+#define PSA_ALG_IS_STREAM_CIPHER(alg) \
+ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
+ (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
+
+/** The stream cipher mode of a stream cipher algorithm.
+ *
+ * The underlying stream cipher is determined by the key type.
+ * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
+ */
+#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
+
+/** The CTR stream cipher mode.
+ *
+ * CTR is a stream cipher which is built from a block cipher.
+ * The underlying block cipher is determined by the key type.
+ * For example, to use AES-128-CTR, use this algorithm with
+ * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
+ */
+#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
+
+/** The CFB stream cipher mode.
+ *
+ * The underlying block cipher is determined by the key type.
+ */
+#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
+
+/** The OFB stream cipher mode.
+ *
+ * The underlying block cipher is determined by the key type.
+ */
+#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
+
+/** The XTS cipher mode.
+ *
+ * XTS is a cipher mode which is built from a block cipher. It requires at
+ * least one full block of input, but beyond this minimum the input
+ * does not need to be a whole number of blocks.
+ */
+#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
+
+/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
+ *
+ * \warning ECB mode does not protect the confidentiality of the encrypted data
+ * except in extremely narrow circumstances. It is recommended that applications
+ * only use ECB if they need to construct an operating mode that the
+ * implementation does not provide. Implementations are encouraged to provide
+ * the modes that applications need in preference to supporting direct access
+ * to ECB.
+ *
+ * The underlying block cipher is determined by the key type.
+ *
+ * This symmetric cipher mode can only be used with messages whose lengths are a
+ * multiple of the block size of the chosen block cipher.
+ *
+ * ECB mode does not accept an initialization vector (IV). When using a
+ * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
+ * and psa_cipher_set_iv() must not be called.
+ */
+#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
+
+/** The CBC block cipher chaining mode, with no padding.
+ *
+ * The underlying block cipher is determined by the key type.
+ *
+ * This symmetric cipher mode can only be used with messages whose lengths
+ * are whole number of blocks for the chosen block cipher.
+ */
+#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
+
+/** The CBC block cipher chaining mode with PKCS#7 padding.
+ *
+ * The underlying block cipher is determined by the key type.
+ *
+ * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
+ */
+#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
+
+#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
+
+/** Whether the specified algorithm is an AEAD mode on a block cipher.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
+ * a block cipher, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
+ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
+ (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
+
+/** The CCM authenticated encryption algorithm.
+ *
+ * The underlying block cipher is determined by the key type.
+ */
+#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
+
+/** The CCM* cipher mode without authentication.
+ *
+ * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
+ * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
+ *
+ * The underlying block cipher is determined by the key type.
+ *
+ * Currently only 13-byte long IV's are supported.
+ */
+#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
+
+/** The GCM authenticated encryption algorithm.
+ *
+ * The underlying block cipher is determined by the key type.
+ */
+#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
+
+/** The Chacha20-Poly1305 AEAD algorithm.
+ *
+ * The ChaCha20_Poly1305 construction is defined in RFC 7539.
+ *
+ * Implementations must support 12-byte nonces, may support 8-byte nonces,
+ * and should reject other sizes.
+ *
+ * Implementations must support 16-byte tags and should reject other sizes.
+ */
+#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
+
+/* In the encoding of an AEAD algorithm, the bits corresponding to
+ * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
+ * The constants for default lengths follow this encoding.
+ */
+#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
+#define PSA_AEAD_TAG_LENGTH_OFFSET 16
+
+/* In the encoding of an AEAD algorithm, the bit corresponding to
+ * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
+ * is a wildcard algorithm. A key with such wildcard algorithm as permitted
+ * algorithm policy can be used with any algorithm corresponding to the
+ * same base class and having a tag length greater than or equal to the one
+ * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
+#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
+
+/** Macro to build a shortened AEAD algorithm.
+ *
+ * A shortened AEAD algorithm is similar to the corresponding AEAD
+ * algorithm, but has an authentication tag that consists of fewer bytes.
+ * Depending on the algorithm, the tag length may affect the calculation
+ * of the ciphertext.
+ *
+ * \param aead_alg An AEAD algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
+ * is true).
+ * \param tag_length Desired length of the authentication tag in bytes.
+ *
+ * \return The corresponding AEAD algorithm with the specified
+ * length.
+ * \return Unspecified if \p aead_alg is not a supported
+ * AEAD algorithm or if \p tag_length is not valid
+ * for the specified AEAD algorithm.
+ */
+#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
+ (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
+ PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
+ ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
+ PSA_ALG_AEAD_TAG_LENGTH_MASK))
+
+/** Retrieve the tag length of a specified AEAD algorithm
+ *
+ * \param aead_alg An AEAD algorithm identifier (value of type
+ * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
+ * is true).
+ *
+ * \return The tag length specified by the input algorithm.
+ * \return Unspecified if \p aead_alg is not a supported
+ * AEAD algorithm.
+ */
+#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
+ (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
+ PSA_AEAD_TAG_LENGTH_OFFSET)
+
+/** Calculate the corresponding AEAD algorithm with the default tag length.
+ *
+ * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
+ *
+ * \return The corresponding AEAD algorithm with the default
+ * tag length for that algorithm.
+ */
+#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
+ ( \
+ PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
+ PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
+ PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
+ 0)
+#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
+ PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
+ PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
+ ref :
+
+/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
+ *
+ * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
+ * sharing the same base algorithm, and where the tag length of the specific
+ * algorithm is equal to or larger then the minimum tag length specified by the
+ * wildcard algorithm.
+ *
+ * \note When setting the minimum required tag length to less than the
+ * smallest tag length allowed by the base algorithm, this effectively
+ * becomes an 'any-tag-length-allowed' policy for that base algorithm.
+ *
+ * \param aead_alg An AEAD algorithm identifier (value of type
+ * #psa_algorithm_t such that
+ * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
+ * \param min_tag_length Desired minimum length of the authentication tag in
+ * bytes. This must be at least 1 and at most the largest
+ * allowed tag length of the algorithm.
+ *
+ * \return The corresponding AEAD wildcard algorithm with the
+ * specified minimum length.
+ * \return Unspecified if \p aead_alg is not a supported
+ * AEAD algorithm or if \p min_tag_length is less than 1
+ * or too large for the specified AEAD algorithm.
+ */
+#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
+ (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
+ PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
+
+#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
+/** RSA PKCS#1 v1.5 signature with hashing.
+ *
+ * This is the signature scheme defined by RFC 8017
+ * (PKCS#1: RSA Cryptography Specifications) under the name
+ * RSASSA-PKCS1-v1_5.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ * This includes #PSA_ALG_ANY_HASH
+ * when specifying the algorithm in a usage policy.
+ *
+ * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
+ (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+/** Raw PKCS#1 v1.5 signature.
+ *
+ * The input to this algorithm is the DigestInfo structure used by
+ * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
+ * steps 3&ndash;6.
+ */
+#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
+#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
+
+#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
+#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
+/** RSA PSS signature with hashing.
+ *
+ * This is the signature scheme defined by RFC 8017
+ * (PKCS#1: RSA Cryptography Specifications) under the name
+ * RSASSA-PSS, with the message generation function MGF1, and with
+ * a salt length equal to the length of the hash, or the largest
+ * possible salt length for the algorithm and key size if that is
+ * smaller than the hash length. The specified hash algorithm is
+ * used to hash the input message, to create the salted hash, and
+ * for the mask generation.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ * This includes #PSA_ALG_ANY_HASH
+ * when specifying the algorithm in a usage policy.
+ *
+ * \return The corresponding RSA PSS signature algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_RSA_PSS(hash_alg) \
+ (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+/** RSA PSS signature with hashing with relaxed verification.
+ *
+ * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
+ * but allows an arbitrary salt length (including \c 0) when verifying a
+ * signature.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ * This includes #PSA_ALG_ANY_HASH
+ * when specifying the algorithm in a usage policy.
+ *
+ * \return The corresponding RSA PSS signature algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
+ (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+/** Whether the specified algorithm is RSA PSS with standard salt.
+ *
+ * \param alg An algorithm value or an algorithm policy wildcard.
+ *
+ * \return 1 if \p alg is of the form
+ * #PSA_ALG_RSA_PSS(\c hash_alg),
+ * where \c hash_alg is a hash algorithm or
+ * #PSA_ALG_ANY_HASH. 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not
+ * a supported algorithm identifier or policy.
+ */
+#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
+
+/** Whether the specified algorithm is RSA PSS with any salt.
+ *
+ * \param alg An algorithm value or an algorithm policy wildcard.
+ *
+ * \return 1 if \p alg is of the form
+ * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
+ * where \c hash_alg is a hash algorithm or
+ * #PSA_ALG_ANY_HASH. 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not
+ * a supported algorithm identifier or policy.
+ */
+#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
+
+/** Whether the specified algorithm is RSA PSS.
+ *
+ * This includes any of the RSA PSS algorithm variants, regardless of the
+ * constraints on salt length.
+ *
+ * \param alg An algorithm value or an algorithm policy wildcard.
+ *
+ * \return 1 if \p alg is of the form
+ * #PSA_ALG_RSA_PSS(\c hash_alg) or
+ * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
+ * where \c hash_alg is a hash algorithm or
+ * #PSA_ALG_ANY_HASH. 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not
+ * a supported algorithm identifier or policy.
+ */
+#define PSA_ALG_IS_RSA_PSS(alg) \
+ (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
+ PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
+
+#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
+/** ECDSA signature with hashing.
+ *
+ * This is the ECDSA signature scheme defined by ANSI X9.62,
+ * with a random per-message secret number (*k*).
+ *
+ * The representation of the signature as a byte string consists of
+ * the concatenation of the signature values *r* and *s*. Each of
+ * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
+ * of the base point of the curve in octets. Each value is represented
+ * in big-endian order (most significant octet first).
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ * This includes #PSA_ALG_ANY_HASH
+ * when specifying the algorithm in a usage policy.
+ *
+ * \return The corresponding ECDSA signature algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_ECDSA(hash_alg) \
+ (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+/** ECDSA signature without hashing.
+ *
+ * This is the same signature scheme as #PSA_ALG_ECDSA(), but
+ * without specifying a hash algorithm. This algorithm may only be
+ * used to sign or verify a sequence of bytes that should be an
+ * already-calculated hash. Note that the input is padded with
+ * zeros on the left or truncated on the left as required to fit
+ * the curve size.
+ */
+#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
+#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
+/** Deterministic ECDSA signature with hashing.
+ *
+ * This is the deterministic ECDSA signature scheme defined by RFC 6979.
+ *
+ * The representation of a signature is the same as with #PSA_ALG_ECDSA().
+ *
+ * Note that when this algorithm is used for verification, signatures
+ * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
+ * same private key are accepted. In other words,
+ * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
+ * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ * This includes #PSA_ALG_ANY_HASH
+ * when specifying the algorithm in a usage policy.
+ *
+ * \return The corresponding deterministic ECDSA signature
+ * algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
+ (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
+#define PSA_ALG_IS_ECDSA(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
+ PSA_ALG_ECDSA_BASE)
+#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
+ (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
+#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
+ (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
+#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
+ (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
+
+/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
+ * using standard parameters.
+ *
+ * Contexts are not supported in the current version of this specification
+ * because there is no suitable signature interface that can take the
+ * context as a parameter. A future version of this specification may add
+ * suitable functions and extend this algorithm to support contexts.
+ *
+ * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
+ * In this specification, the following curves are supported:
+ * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
+ * in RFC 8032.
+ * The curve is Edwards25519.
+ * The hash function used internally is SHA-512.
+ * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
+ * in RFC 8032.
+ * The curve is Edwards448.
+ * The hash function used internally is the first 114 bytes of the
+ * SHAKE256 output.
+ *
+ * This algorithm can be used with psa_sign_message() and
+ * psa_verify_message(). Since there is no prehashing, it cannot be used
+ * with psa_sign_hash() or psa_verify_hash().
+ *
+ * The signature format is the concatenation of R and S as defined by
+ * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
+ * string for Ed448).
+ */
+#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
+
+#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
+#define PSA_ALG_IS_HASH_EDDSA(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
+
+/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
+ * using SHA-512 and the Edwards25519 curve.
+ *
+ * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
+ *
+ * This algorithm is Ed25519 as specified in RFC 8032.
+ * The curve is Edwards25519.
+ * The prehash is SHA-512.
+ * The hash function used internally is SHA-512.
+ *
+ * This is a hash-and-sign algorithm: to calculate a signature,
+ * you can either:
+ * - call psa_sign_message() on the message;
+ * - or calculate the SHA-512 hash of the message
+ * with psa_hash_compute()
+ * or with a multi-part hash operation started with psa_hash_setup(),
+ * using the hash algorithm #PSA_ALG_SHA_512,
+ * then sign the calculated hash with psa_sign_hash().
+ * Verifying a signature is similar, using psa_verify_message() or
+ * psa_verify_hash() instead of the signature function.
+ */
+#define PSA_ALG_ED25519PH \
+ (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
+
+/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
+ * using SHAKE256 and the Edwards448 curve.
+ *
+ * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
+ *
+ * This algorithm is Ed448 as specified in RFC 8032.
+ * The curve is Edwards448.
+ * The prehash is the first 64 bytes of the SHAKE256 output.
+ * The hash function used internally is the first 114 bytes of the
+ * SHAKE256 output.
+ *
+ * This is a hash-and-sign algorithm: to calculate a signature,
+ * you can either:
+ * - call psa_sign_message() on the message;
+ * - or calculate the first 64 bytes of the SHAKE256 output of the message
+ * with psa_hash_compute()
+ * or with a multi-part hash operation started with psa_hash_setup(),
+ * using the hash algorithm #PSA_ALG_SHAKE256_512,
+ * then sign the calculated hash with psa_sign_hash().
+ * Verifying a signature is similar, using psa_verify_message() or
+ * psa_verify_hash() instead of the signature function.
+ */
+#define PSA_ALG_ED448PH \
+ (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
+
+/* Default definition, to be overridden if the library is extended with
+ * more hash-and-sign algorithms that we want to keep out of this header
+ * file. */
+#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
+
+/** Whether the specified algorithm is a signature algorithm that can be used
+ * with psa_sign_hash() and psa_verify_hash().
+ *
+ * This encompasses all strict hash-and-sign algorithms categorized by
+ * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
+ * paradigm more loosely:
+ * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
+ * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
+ *
+ * \param alg An algorithm identifier (value of type psa_algorithm_t).
+ *
+ * \return 1 if alg is a signature algorithm that can be used to sign a
+ * hash. 0 if alg is a signature algorithm that can only be used
+ * to sign a message. 0 if alg is not a signature algorithm.
+ * This macro can return either 0 or 1 if alg is not a
+ * supported algorithm identifier.
+ */
+#define PSA_ALG_IS_SIGN_HASH(alg) \
+ (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
+ PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
+ PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
+
+/** Whether the specified algorithm is a signature algorithm that can be used
+ * with psa_sign_message() and psa_verify_message().
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if alg is a signature algorithm that can be used to sign a
+ * message. 0 if \p alg is a signature algorithm that can only be used
+ * to sign an already-calculated hash. 0 if \p alg is not a signature
+ * algorithm. This macro can return either 0 or 1 if \p alg is not a
+ * supported algorithm identifier.
+ */
+#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
+ (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
+
+/** Whether the specified algorithm is a hash-and-sign algorithm.
+ *
+ * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
+ * structured in two parts: first the calculation of a hash in a way that
+ * does not depend on the key, then the calculation of a signature from the
+ * hash value and the key. Hash-and-sign algorithms encode the hash
+ * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
+ * to extract this algorithm.
+ *
+ * Thus, for a hash-and-sign algorithm,
+ * `psa_sign_message(key, alg, input, ...)` is equivalent to
+ * ```
+ * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
+ * psa_sign_hash(key, alg, hash, ..., signature, ...);
+ * ```
+ * Most usefully, separating the hash from the signature allows the hash
+ * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
+ * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
+ * calculating the hash and then calling psa_verify_hash().
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
+ (PSA_ALG_IS_SIGN_HASH(alg) && \
+ ((alg) & PSA_ALG_HASH_MASK) != 0)
+
+/** Get the hash used by a hash-and-sign signature algorithm.
+ *
+ * A hash-and-sign algorithm is a signature algorithm which is
+ * composed of two phases: first a hashing phase which does not use
+ * the key and produces a hash of the input message, then a signing
+ * phase which only uses the hash and the key and not the message
+ * itself.
+ *
+ * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_SIGN(\p alg) is true).
+ *
+ * \return The underlying hash algorithm if \p alg is a hash-and-sign
+ * algorithm.
+ * \return 0 if \p alg is a signature algorithm that does not
+ * follow the hash-and-sign structure.
+ * \return Unspecified if \p alg is not a signature algorithm or
+ * if it is not supported by the implementation.
+ */
+#define PSA_ALG_SIGN_GET_HASH(alg) \
+ (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
+ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
+ 0)
+
+/** RSA PKCS#1 v1.5 encryption.
+ *
+ * \warning Calling psa_asymmetric_decrypt() with this algorithm as a
+ * parameter is considered an inherently dangerous function
+ * (CWE-242). Unless it is used in a side channel free and safe
+ * way (eg. implementing the TLS protocol as per 7.4.7.1 of
+ * RFC 5246), the calling code is vulnerable.
+ *
+ */
+#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
+
+#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
+/** RSA OAEP encryption.
+ *
+ * This is the encryption scheme defined by RFC 8017
+ * (PKCS#1: RSA Cryptography Specifications) under the name
+ * RSAES-OAEP, with the message generation function MGF1.
+ *
+ * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
+ * for MGF1.
+ *
+ * \return The corresponding RSA OAEP encryption algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_RSA_OAEP(hash_alg) \
+ (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+#define PSA_ALG_IS_RSA_OAEP(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
+#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
+ (PSA_ALG_IS_RSA_OAEP(alg) ? \
+ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
+ 0)
+
+#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
+/** Macro to build an HKDF algorithm.
+ *
+ * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
+ *
+ * This key derivation algorithm uses the following inputs:
+ * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
+ * It is optional; if omitted, the derivation uses an empty salt.
+ * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
+ * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
+ * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
+ * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
+ * starting to generate output.
+ *
+ * \warning HKDF processes the salt as follows: first hash it with hash_alg
+ * if the salt is longer than the block size of the hash algorithm; then
+ * pad with null bytes up to the block size. As a result, it is possible
+ * for distinct salt inputs to result in the same outputs. To ensure
+ * unique outputs, it is recommended to use a fixed length for salt values.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding HKDF algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_HKDF(hash_alg) \
+ (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+/** Whether the specified algorithm is an HKDF algorithm.
+ *
+ * HKDF is a family of key derivation algorithms that are based on a hash
+ * function and the HMAC construction.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_HKDF(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
+#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
+ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
+
+#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
+/** Macro to build an HKDF-Extract algorithm.
+ *
+ * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
+ * HKDF-Extract using HMAC-SHA-256.
+ *
+ * This key derivation algorithm uses the following inputs:
+ * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
+ * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
+ * "extract" step.
+ * The inputs are mandatory and must be passed in the order above.
+ * Each input may only be passed once.
+ *
+ * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
+ * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
+ * as a separate algorithm for the sake of protocols that use it as a
+ * building block. It may also be a slight performance optimization
+ * in applications that use HKDF with the same salt and key but many
+ * different info strings.
+ *
+ * \warning HKDF processes the salt as follows: first hash it with hash_alg
+ * if the salt is longer than the block size of the hash algorithm; then
+ * pad with null bytes up to the block size. As a result, it is possible
+ * for distinct salt inputs to result in the same outputs. To ensure
+ * unique outputs, it is recommended to use a fixed length for salt values.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding HKDF-Extract algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
+ (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+/** Whether the specified algorithm is an HKDF-Extract algorithm.
+ *
+ * HKDF-Extract is a family of key derivation algorithms that are based
+ * on a hash function and the HMAC construction.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
+
+#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
+/** Macro to build an HKDF-Expand algorithm.
+ *
+ * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
+ * HKDF-Expand using HMAC-SHA-256.
+ *
+ * This key derivation algorithm uses the following inputs:
+ * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
+ * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
+ *
+ * The inputs are mandatory and must be passed in the order above.
+ * Each input may only be passed once.
+ *
+ * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
+ * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
+ * a separate algorithm for the sake of protocols that use it as a building
+ * block. It may also be a slight performance optimization in applications
+ * that use HKDF with the same salt and key but many different info strings.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding HKDF-Expand algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_HKDF_EXPAND(hash_alg) \
+ (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+/** Whether the specified algorithm is an HKDF-Expand algorithm.
+ *
+ * HKDF-Expand is a family of key derivation algorithms that are based
+ * on a hash function and the HMAC construction.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_HKDF_EXPAND(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
+
+/** Whether the specified algorithm is an HKDF or HKDF-Extract or
+ * HKDF-Expand algorithm.
+ *
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_ANY_HKDF(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
+ ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
+ ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
+
+#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
+/** Macro to build a TLS-1.2 PRF algorithm.
+ *
+ * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
+ * specified in Section 5 of RFC 5246. It is based on HMAC and can be
+ * used with either SHA-256 or SHA-384.
+ *
+ * This key derivation algorithm uses the following inputs, which must be
+ * passed in the order given here:
+ * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
+ * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
+ * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
+ *
+ * For the application to TLS-1.2 key expansion, the seed is the
+ * concatenation of ServerHello.Random + ClientHello.Random,
+ * and the label is "key expansion".
+ *
+ * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
+ * TLS 1.2 PRF using HMAC-SHA-256.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding TLS-1.2 PRF algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_TLS12_PRF(hash_alg) \
+ (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_TLS12_PRF(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
+#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
+ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
+
+#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
+/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
+ *
+ * In a pure-PSK handshake in TLS 1.2, the master secret is derived
+ * from the PreSharedKey (PSK) through the application of padding
+ * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
+ * The latter is based on HMAC and can be used with either SHA-256
+ * or SHA-384.
+ *
+ * This key derivation algorithm uses the following inputs, which must be
+ * passed in the order given here:
+ * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
+ * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
+ * computation of the premaster secret. This input is optional;
+ * if omitted, it defaults to a string of null bytes with the same length
+ * as the secret (PSK) input.
+ * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
+ * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
+ *
+ * For the application to TLS-1.2, the seed (which is
+ * forwarded to the TLS-1.2 PRF) is the concatenation of the
+ * ClientHello.Random + ServerHello.Random,
+ * the label is "master secret" or "extended master secret" and
+ * the other secret depends on the key exchange specified in the cipher suite:
+ * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
+ * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
+ * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
+ * (RFC 5489, Section 2), the other secret should be the output of the
+ * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
+ * The recommended way to pass this input is to use a key derivation
+ * algorithm constructed as
+ * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
+ * and to call psa_key_derivation_key_agreement(). Alternatively,
+ * this input may be an output of `psa_raw_key_agreement()` passed with
+ * psa_key_derivation_input_bytes(), or an equivalent input passed with
+ * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
+ * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
+ * should be the 48-byte client challenge (the PreMasterSecret of
+ * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
+ * a 46-byte random string chosen by the client. On the server, this is
+ * typically an output of psa_asymmetric_decrypt() using
+ * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
+ * with `psa_key_derivation_input_bytes()`.
+ *
+ * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
+ * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding TLS-1.2 PSK to MS algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
+ (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
+#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
+ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
+
+/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
+ * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
+ * will use to derive the session secret, as defined by step 2 of
+ * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
+ * Uses PSA_ALG_SHA_256.
+ * This function takes a single input:
+ * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
+ * The only supported curve is secp256r1 (the 256-bit curve in
+ * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
+ * The output has to be read as a single chunk of 32 bytes, defined as
+ * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
+ */
+#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
+
+/* This flag indicates whether the key derivation algorithm is suitable for
+ * use on low-entropy secrets such as password - these algorithms are also
+ * known as key stretching or password hashing schemes. These are also the
+ * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
+ *
+ * Those algorithms cannot be combined with a key agreement algorithm.
+ */
+#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
+
+#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
+/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
+ *
+ * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
+ * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
+ * HMAC with the specified hash.
+ * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
+ * using the PRF HMAC-SHA-256.
+ *
+ * This key derivation algorithm uses the following inputs, which must be
+ * provided in the following order:
+ * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
+ * This input step must be used exactly once.
+ * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
+ * This input step must be used one or more times; if used several times, the
+ * inputs will be concatenated. This can be used to build the final salt
+ * from multiple sources, both public and secret (also known as pepper).
+ * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
+ * This input step must be used exactly once.
+ *
+ * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
+ * #PSA_ALG_IS_HASH(\p hash_alg) is true).
+ *
+ * \return The corresponding PBKDF2-HMAC-XXX algorithm.
+ * \return Unspecified if \p hash_alg is not a supported
+ * hash algorithm.
+ */
+#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
+ (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
+
+/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key derivation algorithm identifier.
+ */
+#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
+ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
+#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
+ (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
+/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
+ *
+ * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
+ * This macro specifies the PBKDF2 algorithm constructed using the
+ * AES-CMAC-PRF-128 PRF specified by RFC 4615.
+ *
+ * This key derivation algorithm uses the same inputs as
+ * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
+ */
+#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
+
+#define PSA_ALG_IS_PBKDF2(kdf_alg) \
+ (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
+ ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
+
+#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
+#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
+
+/** Macro to build a combined algorithm that chains a key agreement with
+ * a key derivation.
+ *
+ * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
+ * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
+ * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
+ * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
+ *
+ * \return The corresponding key agreement and derivation
+ * algorithm.
+ * \return Unspecified if \p ka_alg is not a supported
+ * key agreement algorithm or \p kdf_alg is not a
+ * supported key derivation algorithm.
+ */
+#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
+ ((ka_alg) | (kdf_alg))
+
+#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
+ (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
+
+#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
+ (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
+
+/** Whether the specified algorithm is a raw key agreement algorithm.
+ *
+ * A raw key agreement algorithm is one that does not specify
+ * a key derivation function.
+ * Usually, raw key agreement algorithms are constructed directly with
+ * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
+ * constructed with #PSA_ALG_KEY_AGREEMENT().
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \p alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
+ (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
+ PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
+
+#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
+ ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
+
+/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
+ *
+ * The shared secret produced by key agreement is
+ * `g^{ab}` in big-endian format.
+ * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
+ * in bits.
+ */
+#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
+
+/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
+ *
+ * This includes the raw finite field Diffie-Hellman algorithm as well as
+ * finite-field Diffie-Hellman followed by any supporter key derivation
+ * algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key agreement algorithm identifier.
+ */
+#define PSA_ALG_IS_FFDH(alg) \
+ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
+
+/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
+ *
+ * The shared secret produced by key agreement is the x-coordinate of
+ * the shared secret point. It is always `ceiling(m / 8)` bytes long where
+ * `m` is the bit size associated with the curve, i.e. the bit size of the
+ * order of the curve's coordinate field. When `m` is not a multiple of 8,
+ * the byte containing the most significant bit of the shared secret
+ * is padded with zero bits. The byte order is either little-endian
+ * or big-endian depending on the curve type.
+ *
+ * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
+ * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
+ * in little-endian byte order.
+ * The bit size is 448 for Curve448 and 255 for Curve25519.
+ * - For Weierstrass curves over prime fields (curve types
+ * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
+ * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
+ * in big-endian byte order.
+ * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
+ * - For Weierstrass curves over binary fields (curve types
+ * `PSA_ECC_FAMILY_SECTXXX`),
+ * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
+ * in big-endian byte order.
+ * The bit size is `m` for the field `F_{2^m}`.
+ */
+#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
+
+/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
+ * algorithm.
+ *
+ * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
+ * elliptic curve Diffie-Hellman followed by any supporter key derivation
+ * algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
+ * 0 otherwise.
+ * This macro may return either 0 or 1 if \c alg is not a supported
+ * key agreement algorithm identifier.
+ */
+#define PSA_ALG_IS_ECDH(alg) \
+ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
+
+/** Whether the specified algorithm encoding is a wildcard.
+ *
+ * Wildcard values may only be used to set the usage algorithm field in
+ * a policy, not to perform an operation.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return 1 if \c alg is a wildcard algorithm encoding.
+ * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
+ * an operation).
+ * \return This macro may return either 0 or 1 if \c alg is not a supported
+ * algorithm identifier.
+ */
+#define PSA_ALG_IS_WILDCARD(alg) \
+ (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
+ PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
+ PSA_ALG_IS_MAC(alg) ? \
+ (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
+ PSA_ALG_IS_AEAD(alg) ? \
+ (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
+ (alg) == PSA_ALG_ANY_HASH)
+
+/** Get the hash used by a composite algorithm.
+ *
+ * \param alg An algorithm identifier (value of type #psa_algorithm_t).
+ *
+ * \return The underlying hash algorithm if alg is a composite algorithm that
+ * uses a hash algorithm.
+ *
+ * \return \c 0 if alg is not a composite algorithm that uses a hash.
+ */
+#define PSA_ALG_GET_HASH(alg) \
+ (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
+
+/**@}*/
+
+/** \defgroup key_lifetimes Key lifetimes
+ * @{
+ */
+
+/* Note that location and persistence level values are embedded in the
+ * persistent key store, as part of key metadata. As a consequence, they
+ * must not be changed (unless the storage format version changes).
+ */
+
+/** The default lifetime for volatile keys.
+ *
+ * A volatile key only exists as long as the identifier to it is not destroyed.
+ * The key material is guaranteed to be erased on a power reset.
+ *
+ * A key with this lifetime is typically stored in the RAM area of the
+ * PSA Crypto subsystem. However this is an implementation choice.
+ * If an implementation stores data about the key in a non-volatile memory,
+ * it must release all the resources associated with the key and erase the
+ * key material if the calling application terminates.
+ */
+#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
+
+/** The default lifetime for persistent keys.
+ *
+ * A persistent key remains in storage until it is explicitly destroyed or
+ * until the corresponding storage area is wiped. This specification does
+ * not define any mechanism to wipe a storage area, but integrations may
+ * provide their own mechanism (for example to perform a factory reset,
+ * to prepare for device refurbishment, or to uninstall an application).
+ *
+ * This lifetime value is the default storage area for the calling
+ * application. Integrations of Mbed TLS may support other persistent lifetimes.
+ * See ::psa_key_lifetime_t for more information.
+ */
+#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
+
+/** The persistence level of volatile keys.
+ *
+ * See ::psa_key_persistence_t for more information.
+ */
+#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
+
+/** The default persistence level for persistent keys.
+ *
+ * See ::psa_key_persistence_t for more information.
+ */
+#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
+
+/** A persistence level indicating that a key is never destroyed.
+ *
+ * See ::psa_key_persistence_t for more information.
+ */
+#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
+
+#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
+ ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
+
+#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
+ ((psa_key_location_t) ((lifetime) >> 8))
+
+/** Whether a key lifetime indicates that the key is volatile.
+ *
+ * A volatile key is automatically destroyed by the implementation when
+ * the application instance terminates. In particular, a volatile key
+ * is automatically destroyed on a power reset of the device.
+ *
+ * A key that is not volatile is persistent. Persistent keys are
+ * preserved until the application explicitly destroys them or until an
+ * implementation-specific device management event occurs (for example,
+ * a factory reset).
+ *
+ * \param lifetime The lifetime value to query (value of type
+ * ::psa_key_lifetime_t).
+ *
+ * \return \c 1 if the key is volatile, otherwise \c 0.
+ */
+#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
+ (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
+ PSA_KEY_PERSISTENCE_VOLATILE)
+
+/** Whether a key lifetime indicates that the key is read-only.
+ *
+ * Read-only keys cannot be created or destroyed through the PSA Crypto API.
+ * They must be created through platform-specific means that bypass the API.
+ *
+ * Some platforms may offer ways to destroy read-only keys. For example,
+ * consider a platform with multiple levels of privilege, where a
+ * low-privilege application can use a key but is not allowed to destroy
+ * it, and the platform exposes the key to the application with a read-only
+ * lifetime. High-privilege code can destroy the key even though the
+ * application sees the key as read-only.
+ *
+ * \param lifetime The lifetime value to query (value of type
+ * ::psa_key_lifetime_t).
+ *
+ * \return \c 1 if the key is read-only, otherwise \c 0.
+ */
+#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
+ (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
+ PSA_KEY_PERSISTENCE_READ_ONLY)
+
+/** Construct a lifetime from a persistence level and a location.
+ *
+ * \param persistence The persistence level
+ * (value of type ::psa_key_persistence_t).
+ * \param location The location indicator
+ * (value of type ::psa_key_location_t).
+ *
+ * \return The constructed lifetime value.
+ */
+#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
+ ((location) << 8 | (persistence))
+
+/** The local storage area for persistent keys.
+ *
+ * This storage area is available on all systems that can store persistent
+ * keys without delegating the storage to a third-party cryptoprocessor.
+ *
+ * See ::psa_key_location_t for more information.
+ */
+#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
+
+#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
+
+/* Note that key identifier values are embedded in the
+ * persistent key store, as part of key metadata. As a consequence, they
+ * must not be changed (unless the storage format version changes).
+ */
+
+/** The null key identifier.
+ */
+/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
+#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
+/* *INDENT-ON* */
+/** The minimum value for a key identifier chosen by the application.
+ */
+#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
+/** The maximum value for a key identifier chosen by the application.
+ */
+#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
+/** The minimum value for a key identifier chosen by the implementation.
+ */
+#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
+/** The maximum value for a key identifier chosen by the implementation.
+ */
+#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
+
+
+#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
+
+#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
+#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
+#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
+
+/** Utility to initialize a key identifier at runtime.
+ *
+ * \param unused Unused parameter.
+ * \param key_id Identifier of the key.
+ */
+static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
+ unsigned int unused, psa_key_id_t key_id)
+{
+ (void) unused;
+
+ return key_id;
+}
+
+/** Compare two key identifiers.
+ *
+ * \param id1 First key identifier.
+ * \param id2 Second key identifier.
+ *
+ * \return Non-zero if the two key identifier are equal, zero otherwise.
+ */
+static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
+ mbedtls_svc_key_id_t id2)
+{
+ return id1 == id2;
+}
+
+/** Check whether a key identifier is null.
+ *
+ * \param key Key identifier.
+ *
+ * \return Non-zero if the key identifier is null, zero otherwise.
+ */
+static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
+{
+ return key == 0;
+}
+
+#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
+
+#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
+#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
+#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
+
+/** Utility to initialize a key identifier at runtime.
+ *
+ * \param owner_id Identifier of the key owner.
+ * \param key_id Identifier of the key.
+ */
+static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
+ mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
+{
+ return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
+ .MBEDTLS_PRIVATE(owner) = owner_id };
+}
+
+/** Compare two key identifiers.
+ *
+ * \param id1 First key identifier.
+ * \param id2 Second key identifier.
+ *
+ * \return Non-zero if the two key identifier are equal, zero otherwise.
+ */
+static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
+ mbedtls_svc_key_id_t id2)
+{
+ return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
+ mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
+}
+
+/** Check whether a key identifier is null.
+ *
+ * \param key Key identifier.
+ *
+ * \return Non-zero if the key identifier is null, zero otherwise.
+ */
+static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
+{
+ return key.MBEDTLS_PRIVATE(key_id) == 0;
+}
+
+#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
+
+/**@}*/
+
+/** \defgroup policy Key policies
+ * @{
+ */
+
+/* Note that key usage flags are embedded in the
+ * persistent key store, as part of key metadata. As a consequence, they
+ * must not be changed (unless the storage format version changes).
+ */
+
+/** Whether the key may be exported.
+ *
+ * A public key or the public part of a key pair may always be exported
+ * regardless of the value of this permission flag.
+ *
+ * If a key does not have export permission, implementations shall not
+ * allow the key to be exported in plain form from the cryptoprocessor,
+ * whether through psa_export_key() or through a proprietary interface.
+ * The key may however be exportable in a wrapped form, i.e. in a form
+ * where it is encrypted by another key.
+ */
+#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
+
+/** Whether the key may be copied.
+ *
+ * This flag allows the use of psa_copy_key() to make a copy of the key
+ * with the same policy or a more restrictive policy.
+ *
+ * For lifetimes for which the key is located in a secure element which
+ * enforce the non-exportability of keys, copying a key outside the secure
+ * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
+ * Copying the key inside the secure element is permitted with just
+ * #PSA_KEY_USAGE_COPY if the secure element supports it.
+ * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
+ * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
+ * is sufficient to permit the copy.
+ */
+#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
+
+/** Whether the key may be used to encrypt a message.
+ *
+ * This flag allows the key to be used for a symmetric encryption operation,
+ * for an AEAD encryption-and-authentication operation,
+ * or for an asymmetric encryption operation,
+ * if otherwise permitted by the key's type and policy.
+ *
+ * For a key pair, this concerns the public key.
+ */
+#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
+
+/** Whether the key may be used to decrypt a message.
+ *
+ * This flag allows the key to be used for a symmetric decryption operation,
+ * for an AEAD decryption-and-verification operation,
+ * or for an asymmetric decryption operation,
+ * if otherwise permitted by the key's type and policy.
+ *
+ * For a key pair, this concerns the private key.
+ */
+#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
+
+/** Whether the key may be used to sign a message.
+ *
+ * This flag allows the key to be used for a MAC calculation operation or for
+ * an asymmetric message signature operation, if otherwise permitted by the
+ * key’s type and policy.
+ *
+ * For a key pair, this concerns the private key.
+ */
+#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
+
+/** Whether the key may be used to verify a message.
+ *
+ * This flag allows the key to be used for a MAC verification operation or for
+ * an asymmetric message signature verification operation, if otherwise
+ * permitted by the key’s type and policy.
+ *
+ * For a key pair, this concerns the public key.
+ */
+#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
+
+/** Whether the key may be used to sign a message.
+ *
+ * This flag allows the key to be used for a MAC calculation operation
+ * or for an asymmetric signature operation,
+ * if otherwise permitted by the key's type and policy.
+ *
+ * For a key pair, this concerns the private key.
+ */
+#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
+
+/** Whether the key may be used to verify a message signature.
+ *
+ * This flag allows the key to be used for a MAC verification operation
+ * or for an asymmetric signature verification operation,
+ * if otherwise permitted by the key's type and policy.
+ *
+ * For a key pair, this concerns the public key.
+ */
+#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
+
+/** Whether the key may be used to derive other keys or produce a password
+ * hash.
+ *
+ * This flag allows the key to be used for a key derivation operation or for
+ * a key agreement operation, if otherwise permitted by the key's type and
+ * policy.
+ *
+ * If this flag is present on all keys used in calls to
+ * psa_key_derivation_input_key() for a key derivation operation, then it
+ * permits calling psa_key_derivation_output_bytes() or
+ * psa_key_derivation_output_key() at the end of the operation.
+ */
+#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
+
+/** Whether the key may be used to verify the result of a key derivation,
+ * including password hashing.
+ *
+ * This flag allows the key to be used:
+ *
+ * This flag allows the key to be used in a key derivation operation, if
+ * otherwise permitted by the key's type and policy.
+ *
+ * If this flag is present on all keys used in calls to
+ * psa_key_derivation_input_key() for a key derivation operation, then it
+ * permits calling psa_key_derivation_verify_bytes() or
+ * psa_key_derivation_verify_key() at the end of the operation.
+ */
+#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
+
+/**@}*/
+
+/** \defgroup derivation Key derivation
+ * @{
+ */
+
+/* Key input steps are not embedded in the persistent storage, so you can
+ * change them if needed: it's only an ABI change. */
+
+/** A secret input for key derivation.
+ *
+ * This should be a key of type #PSA_KEY_TYPE_DERIVE
+ * (passed to psa_key_derivation_input_key())
+ * or the shared secret resulting from a key agreement
+ * (obtained via psa_key_derivation_key_agreement()).
+ *
+ * The secret can also be a direct input (passed to
+ * key_derivation_input_bytes()). In this case, the derivation operation
+ * may not be used to derive keys: the operation will only allow
+ * psa_key_derivation_output_bytes(),
+ * psa_key_derivation_verify_bytes(), or
+ * psa_key_derivation_verify_key(), but not
+ * psa_key_derivation_output_key().
+ */
+#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
+
+/** A low-entropy secret input for password hashing / key stretching.
+ *
+ * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
+ * psa_key_derivation_input_key()) or a direct input (passed to
+ * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
+ * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
+ * the shared secret resulting from a key agreement.
+ *
+ * The secret can also be a direct input (passed to
+ * key_derivation_input_bytes()). In this case, the derivation operation
+ * may not be used to derive keys: the operation will only allow
+ * psa_key_derivation_output_bytes(),
+ * psa_key_derivation_verify_bytes(), or
+ * psa_key_derivation_verify_key(), but not
+ * psa_key_derivation_output_key().
+ */
+#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
+
+/** A high-entropy additional secret input for key derivation.
+ *
+ * This is typically the shared secret resulting from a key agreement obtained
+ * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
+ * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
+ * a direct input passed to `psa_key_derivation_input_bytes()`.
+ */
+#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
+ ((psa_key_derivation_step_t) 0x0103)
+
+/** A label for key derivation.
+ *
+ * This should be a direct input.
+ * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
+ */
+#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
+
+/** A salt for key derivation.
+ *
+ * This should be a direct input.
+ * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
+ * #PSA_KEY_TYPE_PEPPER.
+ */
+#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
+
+/** An information string for key derivation.
+ *
+ * This should be a direct input.
+ * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
+ */
+#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
+
+/** A seed for key derivation.
+ *
+ * This should be a direct input.
+ * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
+ */
+#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
+
+/** A cost parameter for password hashing / key stretching.
+ *
+ * This must be a direct input, passed to psa_key_derivation_input_integer().
+ */
+#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
+
+/**@}*/
+
+/** \defgroup helper_macros Helper macros
+ * @{
+ */
+
+/* Helper macros */
+
+/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
+ * regardless of the tag length they encode.
+ *
+ * \param aead_alg_1 An AEAD algorithm identifier.
+ * \param aead_alg_2 An AEAD algorithm identifier.
+ *
+ * \return 1 if both identifiers refer to the same AEAD algorithm,
+ * 0 otherwise.
+ * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
+ * a supported AEAD algorithm.
+ */
+#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
+ (!(((aead_alg_1) ^ (aead_alg_2)) & \
+ ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
+
+/**@}*/
+
+/**@}*/
+
+/** \defgroup interruptible Interruptible operations
+ * @{
+ */
+
+/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
+ * the maximum number of ops allowed to be executed by an interruptible
+ * function in a single call.
+ */
+#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
+
+/**@}*/
+
+#endif /* PSA_CRYPTO_VALUES_H */