aboutsummaryrefslogtreecommitdiff
path: root/include/secp256k1.h
diff options
context:
space:
mode:
authorLibravatar vnugent <public@vaughnnugent.com>2024-04-23 18:19:31 -0400
committerLibravatar vnugent <public@vaughnnugent.com>2024-04-23 18:19:31 -0400
commit7cb7a93de4f6f5e741bc5129e3d928e44f050930 (patch)
treeae5c564a0c3c60d0b4dac13ac8e8e3ebf7906ab1 /include/secp256k1.h
parent30e8dda6cbea86bdee6d5dfe48514385d3b9f81b (diff)
refactor!: MbedTLS on Windows, switch to uint32
Diffstat (limited to 'include/secp256k1.h')
-rw-r--r--include/secp256k1.h909
1 files changed, 0 insertions, 909 deletions
diff --git a/include/secp256k1.h b/include/secp256k1.h
deleted file mode 100644
index f4053f2..0000000
--- a/include/secp256k1.h
+++ /dev/null
@@ -1,909 +0,0 @@
-#ifndef SECP256K1_H
-#define SECP256K1_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <stddef.h>
-
-/** Unless explicitly stated all pointer arguments must not be NULL.
- *
- * The following rules specify the order of arguments in API calls:
- *
- * 1. Context pointers go first, followed by output arguments, combined
- * output/input arguments, and finally input-only arguments.
- * 2. Array lengths always immediately follow the argument whose length
- * they describe, even if this violates rule 1.
- * 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
- * later go first. This means: signatures, public nonces, secret nonces,
- * messages, public keys, secret keys, tweaks.
- * 4. Arguments that are not data pointers go last, from more complex to less
- * complex: function pointers, algorithm names, messages, void pointers,
- * counts, flags, booleans.
- * 5. Opaque data pointers follow the function pointer they are to be passed to.
- */
-
-/** Opaque data structure that holds context information
- *
- * The primary purpose of context objects is to store randomization data for
- * enhanced protection against side-channel leakage. This protection is only
- * effective if the context is randomized after its creation. See
- * secp256k1_context_create for creation of contexts and
- * secp256k1_context_randomize for randomization.
- *
- * A secondary purpose of context objects is to store pointers to callback
- * functions that the library will call when certain error states arise. See
- * secp256k1_context_set_error_callback as well as
- * secp256k1_context_set_illegal_callback for details. Future library versions
- * may use context objects for additional purposes.
- *
- * A constructed context can safely be used from multiple threads
- * simultaneously, but API calls that take a non-const pointer to a context
- * need exclusive access to it. In particular this is the case for
- * secp256k1_context_destroy, secp256k1_context_preallocated_destroy,
- * and secp256k1_context_randomize.
- *
- * Regarding randomization, either do it once at creation time (in which case
- * you do not need any locking for the other calls), or use a read-write lock.
- */
-typedef struct secp256k1_context_struct secp256k1_context;
-
-/** Opaque data structure that holds rewritable "scratch space"
- *
- * The purpose of this structure is to replace dynamic memory allocations,
- * because we target architectures where this may not be available. It is
- * essentially a resizable (within specified parameters) block of bytes,
- * which is initially created either by memory allocation or TODO as a pointer
- * into some fixed rewritable space.
- *
- * Unlike the context object, this cannot safely be shared between threads
- * without additional synchronization logic.
- */
-typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
-
-/** Opaque data structure that holds a parsed and valid public key.
- *
- * The exact representation of data inside is implementation defined and not
- * guaranteed to be portable between different platforms or versions. It is
- * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
- * If you need to convert to a format suitable for storage or transmission,
- * use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse. To
- * compare keys, use secp256k1_ec_pubkey_cmp.
- */
-typedef struct {
- unsigned char data[64];
-} secp256k1_pubkey;
-
-/** Opaque data structured that holds a parsed ECDSA signature.
- *
- * The exact representation of data inside is implementation defined and not
- * guaranteed to be portable between different platforms or versions. It is
- * however guaranteed to be 64 bytes in size, and can be safely copied/moved.
- * If you need to convert to a format suitable for storage, transmission, or
- * comparison, use the secp256k1_ecdsa_signature_serialize_* and
- * secp256k1_ecdsa_signature_parse_* functions.
- */
-typedef struct {
- unsigned char data[64];
-} secp256k1_ecdsa_signature;
-
-/** A pointer to a function to deterministically generate a nonce.
- *
- * Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
- * Out: nonce32: pointer to a 32-byte array to be filled by the function.
- * In: msg32: the 32-byte message hash being verified (will not be NULL)
- * key32: pointer to a 32-byte secret key (will not be NULL)
- * algo16: pointer to a 16-byte array describing the signature
- * algorithm (will be NULL for ECDSA for compatibility).
- * data: Arbitrary data pointer that is passed through.
- * attempt: how many iterations we have tried to find a nonce.
- * This will almost always be 0, but different attempt values
- * are required to result in a different nonce.
- *
- * Except for test cases, this function should compute some cryptographic hash of
- * the message, the algorithm, the key and the attempt.
- */
-typedef int (*secp256k1_nonce_function)(
- unsigned char *nonce32,
- const unsigned char *msg32,
- const unsigned char *key32,
- const unsigned char *algo16,
- void *data,
- unsigned int attempt
-);
-
-# if !defined(SECP256K1_GNUC_PREREQ)
-# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
-# define SECP256K1_GNUC_PREREQ(_maj,_min) \
- ((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
-# else
-# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
-# endif
-# endif
-
-/* When this header is used at build-time the SECP256K1_BUILD define needs to be set
- * to correctly setup export attributes and nullness checks. This is normally done
- * by secp256k1.c but to guard against this header being included before secp256k1.c
- * has had a chance to set the define (e.g. via test harnesses that just includes
- * secp256k1.c) we set SECP256K1_NO_BUILD when this header is processed without the
- * BUILD define so this condition can be caught.
- */
-#ifndef SECP256K1_BUILD
-# define SECP256K1_NO_BUILD
-#endif
-
-/* Symbol visibility. */
-#if defined(_WIN32)
- /* GCC for Windows (e.g., MinGW) accepts the __declspec syntax
- * for MSVC compatibility. A __declspec declaration implies (but is not
- * exactly equivalent to) __attribute__ ((visibility("default"))), and so we
- * actually want __declspec even on GCC, see "Microsoft Windows Function
- * Attributes" in the GCC manual and the recommendations in
- * https://gcc.gnu.org/wiki/Visibility. */
-# if defined(SECP256K1_BUILD)
-# if defined(DLL_EXPORT) || defined(SECP256K1_DLL_EXPORT)
- /* Building libsecp256k1 as a DLL.
- * 1. If using Libtool, it defines DLL_EXPORT automatically.
- * 2. In other cases, SECP256K1_DLL_EXPORT must be defined. */
-# define SECP256K1_API extern __declspec (dllexport)
-# endif
- /* The user must define SECP256K1_STATIC when consuming libsecp256k1 as a static
- * library on Windows. */
-# elif !defined(SECP256K1_STATIC)
- /* Consuming libsecp256k1 as a DLL. */
-# define SECP256K1_API extern __declspec (dllimport)
-# endif
-#endif
-#ifndef SECP256K1_API
-# if defined(__GNUC__) && (__GNUC__ >= 4) && defined(SECP256K1_BUILD)
- /* Building libsecp256k1 on non-Windows using GCC or compatible. */
-# define SECP256K1_API extern __attribute__ ((visibility ("default")))
-# else
- /* All cases not captured above. */
-# define SECP256K1_API extern
-# endif
-#endif
-
-/* Warning attributes
- * NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
- * some paranoid null checks. */
-# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
-# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
-# else
-# define SECP256K1_WARN_UNUSED_RESULT
-# endif
-# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
-# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
-# else
-# define SECP256K1_ARG_NONNULL(_x)
-# endif
-
-/* Attribute for marking functions, types, and variables as deprecated */
-#if !defined(SECP256K1_BUILD) && defined(__has_attribute)
-# if __has_attribute(__deprecated__)
-# define SECP256K1_DEPRECATED(_msg) __attribute__ ((__deprecated__(_msg)))
-# else
-# define SECP256K1_DEPRECATED(_msg)
-# endif
-#else
-# define SECP256K1_DEPRECATED(_msg)
-#endif
-
-/* All flags' lower 8 bits indicate what they're for. Do not use directly. */
-#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
-#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
-#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
-/* The higher bits contain the actual data. Do not use directly. */
-#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
-#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
-#define SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY (1 << 10)
-#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
-
-/** Context flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and
- * secp256k1_context_preallocated_create. */
-#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
-
-/** Deprecated context flags. These flags are treated equivalent to SECP256K1_CONTEXT_NONE. */
-#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
-#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
-
-/* Testing flag. Do not use. */
-#define SECP256K1_CONTEXT_DECLASSIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY)
-
-/** Flag to pass to secp256k1_ec_pubkey_serialize. */
-#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
-#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
-
-/** Prefix byte used to tag various encoded curvepoints for specific purposes */
-#define SECP256K1_TAG_PUBKEY_EVEN 0x02
-#define SECP256K1_TAG_PUBKEY_ODD 0x03
-#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
-#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
-#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
-
-/** A built-in constant secp256k1 context object with static storage duration, to be
- * used in conjunction with secp256k1_selftest.
- *
- * This context object offers *only limited functionality* , i.e., it cannot be used
- * for API functions that perform computations involving secret keys, e.g., signing
- * and public key generation. If this restriction applies to a specific API function,
- * it is mentioned in its documentation. See secp256k1_context_create if you need a
- * full context object that supports all functionality offered by the library.
- *
- * It is highly recommended to call secp256k1_selftest before using this context.
- */
-SECP256K1_API const secp256k1_context *secp256k1_context_static;
-
-/** Deprecated alias for secp256k1_context_static. */
-SECP256K1_API const secp256k1_context *secp256k1_context_no_precomp
-SECP256K1_DEPRECATED("Use secp256k1_context_static instead");
-
-/** Perform basic self tests (to be used in conjunction with secp256k1_context_static)
- *
- * This function performs self tests that detect some serious usage errors and
- * similar conditions, e.g., when the library is compiled for the wrong endianness.
- * This is a last resort measure to be used in production. The performed tests are
- * very rudimentary and are not intended as a replacement for running the test
- * binaries.
- *
- * It is highly recommended to call this before using secp256k1_context_static.
- * It is not necessary to call this function before using a context created with
- * secp256k1_context_create (or secp256k1_context_preallocated_create), which will
- * take care of performing the self tests.
- *
- * If the tests fail, this function will call the default error handler to abort the
- * program (see secp256k1_context_set_error_callback).
- */
-SECP256K1_API void secp256k1_selftest(void);
-
-
-/** Create a secp256k1 context object (in dynamically allocated memory).
- *
- * This function uses malloc to allocate memory. It is guaranteed that malloc is
- * called at most once for every call of this function. If you need to avoid dynamic
- * memory allocation entirely, see secp256k1_context_static and the functions in
- * secp256k1_preallocated.h.
- *
- * Returns: pointer to a newly created context object.
- * In: flags: Always set to SECP256K1_CONTEXT_NONE (see below).
- *
- * The only valid non-deprecated flag in recent library versions is
- * SECP256K1_CONTEXT_NONE, which will create a context sufficient for all functionality
- * offered by the library. All other (deprecated) flags will be treated as equivalent
- * to the SECP256K1_CONTEXT_NONE flag. Though the flags parameter primarily exists for
- * historical reasons, future versions of the library may introduce new flags.
- *
- * If the context is intended to be used for API functions that perform computations
- * involving secret keys, e.g., signing and public key generation, then it is highly
- * recommended to call secp256k1_context_randomize on the context before calling
- * those API functions. This will provide enhanced protection against side-channel
- * leakage, see secp256k1_context_randomize for details.
- *
- * Do not create a new context object for each operation, as construction and
- * randomization can take non-negligible time.
- */
-SECP256K1_API secp256k1_context *secp256k1_context_create(
- unsigned int flags
-) SECP256K1_WARN_UNUSED_RESULT;
-
-/** Copy a secp256k1 context object (into dynamically allocated memory).
- *
- * This function uses malloc to allocate memory. It is guaranteed that malloc is
- * called at most once for every call of this function. If you need to avoid dynamic
- * memory allocation entirely, see the functions in secp256k1_preallocated.h.
- *
- * Cloning secp256k1_context_static is not possible, and should not be emulated by
- * the caller (e.g., using memcpy). Create a new context instead.
- *
- * Returns: pointer to a newly created context object.
- * Args: ctx: pointer to a context to copy (not secp256k1_context_static).
- */
-SECP256K1_API secp256k1_context *secp256k1_context_clone(
- const secp256k1_context *ctx
-) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
-
-/** Destroy a secp256k1 context object (created in dynamically allocated memory).
- *
- * The context pointer may not be used afterwards.
- *
- * The context to destroy must have been created using secp256k1_context_create
- * or secp256k1_context_clone. If the context has instead been created using
- * secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the
- * behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must
- * be used instead.
- *
- * Args: ctx: pointer to a context to destroy, constructed using
- * secp256k1_context_create or secp256k1_context_clone
- * (i.e., not secp256k1_context_static).
- */
-SECP256K1_API void secp256k1_context_destroy(
- secp256k1_context *ctx
-) SECP256K1_ARG_NONNULL(1);
-
-/** Set a callback function to be called when an illegal argument is passed to
- * an API call. It will only trigger for violations that are mentioned
- * explicitly in the header.
- *
- * The philosophy is that these shouldn't be dealt with through a
- * specific return value, as calling code should not have branches to deal with
- * the case that this code itself is broken.
- *
- * On the other hand, during debug stage, one would want to be informed about
- * such mistakes, and the default (crashing) may be inadvisable.
- * When this callback is triggered, the API function called is guaranteed not
- * to cause a crash, though its return value and output arguments are
- * undefined.
- *
- * When this function has not been called (or called with fn==NULL), then the
- * default handler will be used. The library provides a default handler which
- * writes the message to stderr and calls abort. This default handler can be
- * replaced at link time if the preprocessor macro
- * USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build
- * has been configured with --enable-external-default-callbacks. Then the
- * following two symbols must be provided to link against:
- * - void secp256k1_default_illegal_callback_fn(const char *message, void *data);
- * - void secp256k1_default_error_callback_fn(const char *message, void *data);
- * The library can call these default handlers even before a proper callback data
- * pointer could have been set using secp256k1_context_set_illegal_callback or
- * secp256k1_context_set_error_callback, e.g., when the creation of a context
- * fails. In this case, the corresponding default handler will be called with
- * the data pointer argument set to NULL.
- *
- * Args: ctx: pointer to a context object.
- * In: fun: pointer to a function to call when an illegal argument is
- * passed to the API, taking a message and an opaque pointer.
- * (NULL restores the default handler.)
- * data: the opaque pointer to pass to fun above, must be NULL for the default handler.
- *
- * See also secp256k1_context_set_error_callback.
- */
-SECP256K1_API void secp256k1_context_set_illegal_callback(
- secp256k1_context *ctx,
- void (*fun)(const char *message, void *data),
- const void *data
-) SECP256K1_ARG_NONNULL(1);
-
-/** Set a callback function to be called when an internal consistency check
- * fails.
- *
- * The default callback writes an error message to stderr and calls abort
- * to abort the program.
- *
- * This can only trigger in case of a hardware failure, miscompilation,
- * memory corruption, serious bug in the library, or other error would can
- * otherwise result in undefined behaviour. It will not trigger due to mere
- * incorrect usage of the API (see secp256k1_context_set_illegal_callback
- * for that). After this callback returns, anything may happen, including
- * crashing.
- *
- * Args: ctx: pointer to a context object.
- * In: fun: pointer to a function to call when an internal error occurs,
- * taking a message and an opaque pointer (NULL restores the
- * default handler, see secp256k1_context_set_illegal_callback
- * for details).
- * data: the opaque pointer to pass to fun above, must be NULL for the default handler.
- *
- * See also secp256k1_context_set_illegal_callback.
- */
-SECP256K1_API void secp256k1_context_set_error_callback(
- secp256k1_context *ctx,
- void (*fun)(const char *message, void *data),
- const void *data
-) SECP256K1_ARG_NONNULL(1);
-
-/** Create a secp256k1 scratch space object.
- *
- * Returns: a newly created scratch space.
- * Args: ctx: pointer to a context object.
- * In: size: amount of memory to be available as scratch space. Some extra
- * (<100 bytes) will be allocated for extra accounting.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space *secp256k1_scratch_space_create(
- const secp256k1_context *ctx,
- size_t size
-) SECP256K1_ARG_NONNULL(1);
-
-/** Destroy a secp256k1 scratch space.
- *
- * The pointer may not be used afterwards.
- * Args: ctx: pointer to a context object.
- * scratch: space to destroy
- */
-SECP256K1_API void secp256k1_scratch_space_destroy(
- const secp256k1_context *ctx,
- secp256k1_scratch_space *scratch
-) SECP256K1_ARG_NONNULL(1);
-
-/** Parse a variable-length public key into the pubkey object.
- *
- * Returns: 1 if the public key was fully valid.
- * 0 if the public key could not be parsed or is invalid.
- * Args: ctx: pointer to a context object.
- * Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
- * parsed version of input. If not, its value is undefined.
- * In: input: pointer to a serialized public key
- * inputlen: length of the array pointed to by input
- *
- * This function supports parsing compressed (33 bytes, header byte 0x02 or
- * 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
- * byte 0x06 or 0x07) format public keys.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
- const secp256k1_context *ctx,
- secp256k1_pubkey *pubkey,
- const unsigned char *input,
- size_t inputlen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Serialize a pubkey object into a serialized byte sequence.
- *
- * Returns: 1 always.
- * Args: ctx: pointer to a context object.
- * Out: output: pointer to a 65-byte (if compressed==0) or 33-byte (if
- * compressed==1) byte array to place the serialized key
- * in.
- * In/Out: outputlen: pointer to an integer which is initially set to the
- * size of output, and is overwritten with the written
- * size.
- * In: pubkey: pointer to a secp256k1_pubkey containing an
- * initialized public key.
- * flags: SECP256K1_EC_COMPRESSED if serialization should be in
- * compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
- */
-SECP256K1_API int secp256k1_ec_pubkey_serialize(
- const secp256k1_context *ctx,
- unsigned char *output,
- size_t *outputlen,
- const secp256k1_pubkey *pubkey,
- unsigned int flags
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Compare two public keys using lexicographic (of compressed serialization) order
- *
- * Returns: <0 if the first public key is less than the second
- * >0 if the first public key is greater than the second
- * 0 if the two public keys are equal
- * Args: ctx: pointer to a context object
- * In: pubkey1: first public key to compare
- * pubkey2: second public key to compare
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_cmp(
- const secp256k1_context *ctx,
- const secp256k1_pubkey *pubkey1,
- const secp256k1_pubkey *pubkey2
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Parse an ECDSA signature in compact (64 bytes) format.
- *
- * Returns: 1 when the signature could be parsed, 0 otherwise.
- * Args: ctx: pointer to a context object
- * Out: sig: pointer to a signature object
- * In: input64: pointer to the 64-byte array to parse
- *
- * The signature must consist of a 32-byte big endian R value, followed by a
- * 32-byte big endian S value. If R or S fall outside of [0..order-1], the
- * encoding is invalid. R and S with value 0 are allowed in the encoding.
- *
- * After the call, sig will always be initialized. If parsing failed or R or
- * S are zero, the resulting sig value is guaranteed to fail verification for
- * any message and public key.
- */
-SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
- const secp256k1_context *ctx,
- secp256k1_ecdsa_signature *sig,
- const unsigned char *input64
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Parse a DER ECDSA signature.
- *
- * Returns: 1 when the signature could be parsed, 0 otherwise.
- * Args: ctx: pointer to a context object
- * Out: sig: pointer to a signature object
- * In: input: pointer to the signature to be parsed
- * inputlen: the length of the array pointed to be input
- *
- * This function will accept any valid DER encoded signature, even if the
- * encoded numbers are out of range.
- *
- * After the call, sig will always be initialized. If parsing failed or the
- * encoded numbers are out of range, signature verification with it is
- * guaranteed to fail for every message and public key.
- */
-SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
- const secp256k1_context *ctx,
- secp256k1_ecdsa_signature *sig,
- const unsigned char *input,
- size_t inputlen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Serialize an ECDSA signature in DER format.
- *
- * Returns: 1 if enough space was available to serialize, 0 otherwise
- * Args: ctx: pointer to a context object
- * Out: output: pointer to an array to store the DER serialization
- * In/Out: outputlen: pointer to a length integer. Initially, this integer
- * should be set to the length of output. After the call
- * it will be set to the length of the serialization (even
- * if 0 was returned).
- * In: sig: pointer to an initialized signature object
- */
-SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
- const secp256k1_context *ctx,
- unsigned char *output,
- size_t *outputlen,
- const secp256k1_ecdsa_signature *sig
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Serialize an ECDSA signature in compact (64 byte) format.
- *
- * Returns: 1
- * Args: ctx: pointer to a context object
- * Out: output64: pointer to a 64-byte array to store the compact serialization
- * In: sig: pointer to an initialized signature object
- *
- * See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
- */
-SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
- const secp256k1_context *ctx,
- unsigned char *output64,
- const secp256k1_ecdsa_signature *sig
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Verify an ECDSA signature.
- *
- * Returns: 1: correct signature
- * 0: incorrect or unparseable signature
- * Args: ctx: pointer to a context object
- * In: sig: the signature being verified.
- * msghash32: the 32-byte message hash being verified.
- * The verifier must make sure to apply a cryptographic
- * hash function to the message by itself and not accept an
- * msghash32 value directly. Otherwise, it would be easy to
- * create a "valid" signature without knowledge of the
- * secret key. See also
- * https://bitcoin.stackexchange.com/a/81116/35586 for more
- * background on this topic.
- * pubkey: pointer to an initialized public key to verify with.
- *
- * To avoid accepting malleable signatures, only ECDSA signatures in lower-S
- * form are accepted.
- *
- * If you need to accept ECDSA signatures from sources that do not obey this
- * rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
- * verification, but be aware that doing so results in malleable signatures.
- *
- * For details, see the comments for that function.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
- const secp256k1_context *ctx,
- const secp256k1_ecdsa_signature *sig,
- const unsigned char *msghash32,
- const secp256k1_pubkey *pubkey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Convert a signature to a normalized lower-S form.
- *
- * Returns: 1 if sigin was not normalized, 0 if it already was.
- * Args: ctx: pointer to a context object
- * Out: sigout: pointer to a signature to fill with the normalized form,
- * or copy if the input was already normalized. (can be NULL if
- * you're only interested in whether the input was already
- * normalized).
- * In: sigin: pointer to a signature to check/normalize (can be identical to sigout)
- *
- * With ECDSA a third-party can forge a second distinct signature of the same
- * message, given a single initial signature, but without knowing the key. This
- * is done by negating the S value modulo the order of the curve, 'flipping'
- * the sign of the random point R which is not included in the signature.
- *
- * Forgery of the same message isn't universally problematic, but in systems
- * where message malleability or uniqueness of signatures is important this can
- * cause issues. This forgery can be blocked by all verifiers forcing signers
- * to use a normalized form.
- *
- * The lower-S form reduces the size of signatures slightly on average when
- * variable length encodings (such as DER) are used and is cheap to verify,
- * making it a good choice. Security of always using lower-S is assured because
- * anyone can trivially modify a signature after the fact to enforce this
- * property anyway.
- *
- * The lower S value is always between 0x1 and
- * 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
- * inclusive.
- *
- * No other forms of ECDSA malleability are known and none seem likely, but
- * there is no formal proof that ECDSA, even with this additional restriction,
- * is free of other malleability. Commonly used serialization schemes will also
- * accept various non-unique encodings, so care should be taken when this
- * property is required for an application.
- *
- * The secp256k1_ecdsa_sign function will by default create signatures in the
- * lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
- * signatures come from a system that cannot enforce this property,
- * secp256k1_ecdsa_signature_normalize must be called before verification.
- */
-SECP256K1_API int secp256k1_ecdsa_signature_normalize(
- const secp256k1_context *ctx,
- secp256k1_ecdsa_signature *sigout,
- const secp256k1_ecdsa_signature *sigin
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
-
-/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
- * If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
- * extra entropy.
- */
-SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
-
-/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
-SECP256K1_API const secp256k1_nonce_function secp256k1_nonce_function_default;
-
-/** Create an ECDSA signature.
- *
- * Returns: 1: signature created
- * 0: the nonce generation function failed, or the secret key was invalid.
- * Args: ctx: pointer to a context object (not secp256k1_context_static).
- * Out: sig: pointer to an array where the signature will be placed.
- * In: msghash32: the 32-byte message hash being signed.
- * seckey: pointer to a 32-byte secret key.
- * noncefp: pointer to a nonce generation function. If NULL,
- * secp256k1_nonce_function_default is used.
- * ndata: pointer to arbitrary data used by the nonce generation function
- * (can be NULL). If it is non-NULL and
- * secp256k1_nonce_function_default is used, then ndata must be a
- * pointer to 32-bytes of additional data.
- *
- * The created signature is always in lower-S form. See
- * secp256k1_ecdsa_signature_normalize for more details.
- */
-SECP256K1_API int secp256k1_ecdsa_sign(
- const secp256k1_context *ctx,
- secp256k1_ecdsa_signature *sig,
- const unsigned char *msghash32,
- const unsigned char *seckey,
- secp256k1_nonce_function noncefp,
- const void *ndata
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
-
-/** Verify an ECDSA secret key.
- *
- * A secret key is valid if it is not 0 and less than the secp256k1 curve order
- * when interpreted as an integer (most significant byte first). The
- * probability of choosing a 32-byte string uniformly at random which is an
- * invalid secret key is negligible.
- *
- * Returns: 1: secret key is valid
- * 0: secret key is invalid
- * Args: ctx: pointer to a context object.
- * In: seckey: pointer to a 32-byte secret key.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
- const secp256k1_context *ctx,
- const unsigned char *seckey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Compute the public key for a secret key.
- *
- * Returns: 1: secret was valid, public key stores.
- * 0: secret was invalid, try again.
- * Args: ctx: pointer to a context object (not secp256k1_context_static).
- * Out: pubkey: pointer to the created public key.
- * In: seckey: pointer to a 32-byte secret key.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
- const secp256k1_context *ctx,
- secp256k1_pubkey *pubkey,
- const unsigned char *seckey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Negates a secret key in place.
- *
- * Returns: 0 if the given secret key is invalid according to
- * secp256k1_ec_seckey_verify. 1 otherwise
- * Args: ctx: pointer to a context object
- * In/Out: seckey: pointer to the 32-byte secret key to be negated. If the
- * secret key is invalid according to
- * secp256k1_ec_seckey_verify, this function returns 0 and
- * seckey will be set to some unspecified value.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_negate(
- const secp256k1_context *ctx,
- unsigned char *seckey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Same as secp256k1_ec_seckey_negate, but DEPRECATED. Will be removed in
- * future versions. */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate(
- const secp256k1_context *ctx,
- unsigned char *seckey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2)
- SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_negate instead");
-
-/** Negates a public key in place.
- *
- * Returns: 1 always
- * Args: ctx: pointer to a context object
- * In/Out: pubkey: pointer to the public key to be negated.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
- const secp256k1_context *ctx,
- secp256k1_pubkey *pubkey
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
-
-/** Tweak a secret key by adding tweak to it.
- *
- * Returns: 0 if the arguments are invalid or the resulting secret key would be
- * invalid (only when the tweak is the negation of the secret key). 1
- * otherwise.
- * Args: ctx: pointer to a context object.
- * In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
- * invalid according to secp256k1_ec_seckey_verify, this
- * function returns 0. seckey will be set to some unspecified
- * value if this function returns 0.
- * In: tweak32: pointer to a 32-byte tweak, which must be valid according to
- * secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
- * random 32-byte tweaks, the chance of being invalid is
- * negligible (around 1 in 2^128).
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_add(
- const secp256k1_context *ctx,
- unsigned char *seckey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Same as secp256k1_ec_seckey_tweak_add, but DEPRECATED. Will be removed in
- * future versions. */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
- const secp256k1_context *ctx,
- unsigned char *seckey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
- SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_tweak_add instead");
-
-/** Tweak a public key by adding tweak times the generator to it.
- *
- * Returns: 0 if the arguments are invalid or the resulting public key would be
- * invalid (only when the tweak is the negation of the corresponding
- * secret key). 1 otherwise.
- * Args: ctx: pointer to a context object.
- * In/Out: pubkey: pointer to a public key object. pubkey will be set to an
- * invalid value if this function returns 0.
- * In: tweak32: pointer to a 32-byte tweak, which must be valid according to
- * secp256k1_ec_seckey_verify or 32 zero bytes. For uniformly
- * random 32-byte tweaks, the chance of being invalid is
- * negligible (around 1 in 2^128).
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
- const secp256k1_context *ctx,
- secp256k1_pubkey *pubkey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Tweak a secret key by multiplying it by a tweak.
- *
- * Returns: 0 if the arguments are invalid. 1 otherwise.
- * Args: ctx: pointer to a context object.
- * In/Out: seckey: pointer to a 32-byte secret key. If the secret key is
- * invalid according to secp256k1_ec_seckey_verify, this
- * function returns 0. seckey will be set to some unspecified
- * value if this function returns 0.
- * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
- * secp256k1_ec_seckey_verify, this function returns 0. For
- * uniformly random 32-byte arrays the chance of being invalid
- * is negligible (around 1 in 2^128).
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_tweak_mul(
- const secp256k1_context *ctx,
- unsigned char *seckey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Same as secp256k1_ec_seckey_tweak_mul, but DEPRECATED. Will be removed in
- * future versions. */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
- const secp256k1_context *ctx,
- unsigned char *seckey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3)
- SECP256K1_DEPRECATED("Use secp256k1_ec_seckey_tweak_mul instead");
-
-/** Tweak a public key by multiplying it by a tweak value.
- *
- * Returns: 0 if the arguments are invalid. 1 otherwise.
- * Args: ctx: pointer to a context object.
- * In/Out: pubkey: pointer to a public key object. pubkey will be set to an
- * invalid value if this function returns 0.
- * In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according to
- * secp256k1_ec_seckey_verify, this function returns 0. For
- * uniformly random 32-byte arrays the chance of being invalid
- * is negligible (around 1 in 2^128).
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
- const secp256k1_context *ctx,
- secp256k1_pubkey *pubkey,
- const unsigned char *tweak32
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Randomizes the context to provide enhanced protection against side-channel leakage.
- *
- * Returns: 1: randomization successful
- * 0: error
- * Args: ctx: pointer to a context object (not secp256k1_context_static).
- * In: seed32: pointer to a 32-byte random seed (NULL resets to initial state).
- *
- * While secp256k1 code is written and tested to be constant-time no matter what
- * secret values are, it is possible that a compiler may output code which is not,
- * and also that the CPU may not emit the same radio frequencies or draw the same
- * amount of power for all values. Randomization of the context shields against
- * side-channel observations which aim to exploit secret-dependent behaviour in
- * certain computations which involve secret keys.
- *
- * It is highly recommended to call this function on contexts returned from
- * secp256k1_context_create or secp256k1_context_clone (or from the corresponding
- * functions in secp256k1_preallocated.h) before using these contexts to call API
- * functions that perform computations involving secret keys, e.g., signing and
- * public key generation. It is possible to call this function more than once on
- * the same context, and doing so before every few computations involving secret
- * keys is recommended as a defense-in-depth measure. Randomization of the static
- * context secp256k1_context_static is not supported.
- *
- * Currently, the random seed is mainly used for blinding multiplications of a
- * secret scalar with the elliptic curve base point. Multiplications of this
- * kind are performed by exactly those API functions which are documented to
- * require a context that is not secp256k1_context_static. As a rule of thumb,
- * these are all functions which take a secret key (or a keypair) as an input.
- * A notable exception to that rule is the ECDH module, which relies on a different
- * kind of elliptic curve point multiplication and thus does not benefit from
- * enhanced protection against side-channel leakage currently.
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
- secp256k1_context *ctx,
- const unsigned char *seed32
-) SECP256K1_ARG_NONNULL(1);
-
-/** Add a number of public keys together.
- *
- * Returns: 1: the sum of the public keys is valid.
- * 0: the sum of the public keys is not valid.
- * Args: ctx: pointer to a context object.
- * Out: out: pointer to a public key object for placing the resulting public key.
- * In: ins: pointer to array of pointers to public keys.
- * n: the number of public keys to add together (must be at least 1).
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
- const secp256k1_context *ctx,
- secp256k1_pubkey *out,
- const secp256k1_pubkey * const *ins,
- size_t n
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
-
-/** Compute a tagged hash as defined in BIP-340.
- *
- * This is useful for creating a message hash and achieving domain separation
- * through an application-specific tag. This function returns
- * SHA256(SHA256(tag)||SHA256(tag)||msg). Therefore, tagged hash
- * implementations optimized for a specific tag can precompute the SHA256 state
- * after hashing the tag hashes.
- *
- * Returns: 1 always.
- * Args: ctx: pointer to a context object
- * Out: hash32: pointer to a 32-byte array to store the resulting hash
- * In: tag: pointer to an array containing the tag
- * taglen: length of the tag array
- * msg: pointer to an array containing the message
- * msglen: length of the message array
- */
-SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_tagged_sha256(
- const secp256k1_context *ctx,
- unsigned char *hash32,
- const unsigned char *tag,
- size_t taglen,
- const unsigned char *msg,
- size_t msglen
-) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* SECP256K1_H */